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Abstract

The main goal of this work is to prove the existence of exotic smooth spheres. These are smooth
manifolds that are homeomorphic but not diffeomorphic to the standard sphere. This was first shown
in the 7-dimensional case by John Milnor in his influential paper [Mil56], and this work replicates his
construction.

In order to state and prove this result, though, a journey through some background is needed. This
includes singular homology and cohomology theory, Morse theory and characteristic classes. Hence, we
also slightly develop these topics here.
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Introduction

As JohnMilnor explains in [Mil07], back in the 1950’s hewas studying 2𝑛-manifolds that are (𝑛−1)-
connected. His research allowed him to make the following statement:

There exist homotopy 7-spheres that are not diffeomorphic to the standard 7-sphere.

This led him to believe he had found a counterexample to the Poincaré conjecture in dimension 7, as
he assumed that two homeomorphicmanifolds are always diffeomorphic. However, usingMorse theory,
hemanaged to show that these homotopy 7-spheres were actually topological 7-spheres, thus proving the
existence of exotic spheres in dimension 7. This is considered to be a remarkable landmark in the history
of differential geometry as it solved an interesting problem and, at the same time, it created a wide scope
of new lines of research.

In thisworkwe start by introducing basic results of singular homology and cohomology inChapter 1.
These are presented without proofs, but several references are given.

In Chapter 2, we give a small introduction toMorse Theory. In particular, we state and prove Reeb’s
theorem and use it to show that certain smooth 7-manifolds 𝑀7

𝑘 are homeomorphic to the 7-sphere.
These manifolds will be seen later on to be exotic 7-spheres for suitable values of 𝑘.

InChapter 3, we define three types of characteristic classes. Namely, the Euler class, theChern classes
and the Pontrjagin classes. We also state their important properties and give proofs for some of them.
Finally, we partially prove the Hirzebruch signature theorem, as it constitutes a fundamental building
block for Milnor’s construction of exotic 7-spheres.

Having introduced all these topics, in Chapter 4 we use them to finally prove that the 7-manifolds
𝑀7

𝑘 are not diffeomorphic to the standard 7-sphere when 𝑘2 ≢ 1 (mod 7), thus completing the goal of
this work.



Chapter 1

Preliminary topics

This chapter is a reviewof important definitions and results abouthomology and cohomology theory.
The content is mostly taken from [Hat01], but some results, arguments and notation also come from
[GH81] and [May99].

1.1 Homology

Throughout this section, let𝑋, 𝑌 be non-empty topological spaces and let 𝑅 be a commutative ring
with unit. Also, every subset ofR𝑚 is assumed to have the induced topology.

We begin with a purely algebraic definition.

Definition 1.1. A chain complex (𝐶•, 𝜕•) is a sequenceof𝑅-modules𝐶𝑛 and𝑅-linearmaps 𝜕𝑛 ∶ 𝐶𝑛 → 𝐶𝑛−1
that satisfy 𝜕𝑛 ∘ 𝜕𝑛+1 = 0. We will sometimes drop the index 𝑛 of the maps 𝜕𝑛, and hence we may write

⋯ 𝐶𝑛+1 𝐶𝑛 𝐶𝑛−1 ⋯𝜕 𝜕

to denote the chain complex (𝐶•, 𝜕•). The 𝑛
𝑡ℎ homology𝑅-module of (𝐶•, 𝜕•) is defined to be the quotient

𝐻𝑛(𝐶) = 𝐻𝑛(𝐶•, 𝜕•) ∶= ker 𝜕𝑛/ im 𝜕𝑛+1.
A chain map 𝑓• ∶ (𝐶•, 𝜕•) → (𝐷•, 𝜕•) between chain complexes is a collection of 𝑅-linear maps

𝑓𝑛 ∶ 𝐶𝑛 → 𝐷𝑛 such that the diagram

⋯ 𝐶𝑛+1 𝐶𝑛 𝐶𝑛−1 ⋯

⋯ 𝐷𝑛+1 𝐷𝑛 𝐷𝑛−1 ⋯

𝜕

𝑓𝑛+1

𝜕

𝑓𝑛 𝑓𝑛−1
𝜕 𝜕

commutes. As a consequence, 𝑓𝑛(ker 𝜕𝑛) ⊆ ker 𝜕𝑛 and 𝑓𝑛(im 𝜕𝑛+1) ⊆ im 𝜕𝑛+1 for every integer 𝑛, so 𝑓•
induces 𝑅-linear maps in homology

𝐻𝑛(𝑓•) ∶ 𝐻𝑛(𝐶) → 𝐻𝑛(𝐷)
[𝑐] ↦ [𝑓𝑛(𝑐)].

Our first goal is to construct a chain complex (𝐶•(𝑋), 𝜕•) for every topological space 𝑋, so that the
homology of𝑋 can be taken to be the homology of (𝐶•(𝑋), 𝜕•). There are several ways to do this if𝑋 is
furnished with additional structure. For instance, one may consider simplicial homology for simplicial
complexes or cellular homology for CW complexes. In order to be as general as possible, we will only
consider singular homology, as no additional structure on𝑋 is required.
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2 Preliminary topics

Definition 1.2. Let 𝑣0, … , 𝑣𝑛 ∈ R𝑛+1 be 𝑛 + 1 linearly independent points. The n-simplex spanned by
𝑣0, … , 𝑣𝑛 (denoted [𝑣0, … , 𝑣𝑛]) is the smallest convex subset ofR𝑛+1 containing them, namely:

[𝑣0, … , 𝑣𝑛] = {
𝑛
∑
𝑖=0

𝑡𝑖𝑣𝑖 ∈ R
𝑛+1 ∶

𝑛
∑
𝑖=0

𝑡𝑖 = 1, 𝑡𝑖 ≥ 0} ⊆ R𝑛+1.

The standardn-simplex (denotedΔ𝑛) is the𝑛-simplex [𝑒0, … , 𝑒𝑛], where 𝑒𝑖 = (0, … ,
𝑖+1
⌣
1 , … , 0). Namely:

Δ𝑛 = {(𝑡0, … , 𝑡𝑛) ∈ R
𝑛+1 ∶

𝑛
∑
𝑖=0

𝑡𝑖 = 1, 𝑡𝑖 ≥ 0} ⊆ R𝑛+1.

Definition 1.3. A singular n-simplex is a continuous map Δ𝑛 → 𝑋. We denote by 𝐶𝑛(𝑋) the free 𝑅-
module generated by all singular 𝑛-simplexes and call its elements (singular) n-chains. For an 𝑛-simplex

𝜎 ∶ Δ𝑛 → 𝑋, let 𝜎(𝑖) ∶ Δ𝑛−1 → 𝑋 be the composition map

[𝑒0, … , 𝑒̂𝑖, … , 𝑒𝑛]

Δ𝑛−1 𝑋

𝜎|[𝑒0,…,𝑒̂𝑖,…,𝑒𝑛]
𝜙(𝑖)
|Δ𝑛−1

where 𝜙(𝑖) ∶ R𝑛 → R𝑛+1 is the unique affine map satisfying for 0 ≤ 𝑗 ≤ 𝑛 − 1

𝜙(𝑖)(𝑒𝑗) = {
𝑒𝑗 if 𝑗 < 𝑖,
𝑒𝑗+1 if 𝑗 ≥ 𝑖.

We also define the boundary map 𝜕𝑛 ∶ 𝐶𝑛(𝑋) → 𝐶𝑛−1(𝑋) by

𝜕𝑛𝜎 =
𝑛
∑
𝑖=0

(−1)𝑖𝜎(𝑖)

for a singular 𝑛-simplex 𝜎 ∶ Δ𝑛 → 𝑋, and we extend linearly to any 𝑛-chain.

Lemma 1.4. 𝜕𝑛𝜕𝑛+1 = 0 for every 𝑛 ≥ 0.

As a consequence, we have a chain complex of 𝑅-modules

⋯ 𝐶𝑛+1(𝑋) 𝐶𝑛(𝑋) ⋯ 𝐶1(𝑋) 𝐶0(𝑋) 0
𝜕𝑛+2 𝜕𝑛+1 𝜕𝑛 𝜕2 𝜕1 𝜕0

that allows us to define the homology of an arbitrary topological space𝑋.

Definition 1.5. Elements of 𝑍𝑛(𝑋) ∶= ker 𝜕𝑛 are called n-cycles and elements of 𝐵𝑛(𝑋) ∶= im 𝜕𝑛+1 are
called n-boundaries. The 𝑛𝑡ℎ (singular) homology 𝑅-module of 𝑋 is defined as𝐻𝑛(𝑋) ∶= 𝑍𝑛(𝑋)/𝐵𝑛(𝑋).
If we want to make explicit the ring 𝑅we are working with, we will write𝐻𝑛(𝑋; 𝑅), 𝐶𝑛(𝑋; 𝑅) and so on.

Remark 1.6. The previous chain complex can be slightly augmented to

⋯ 𝐶2(𝑋) 𝐶1(𝑋) 𝐶0(𝑋) 𝑅 0𝜕2 𝜕1 𝜖

where 𝜖(𝜎) = 1 for every 0-simplex 𝜎. The homology𝑅-modules of this extended chain complex,𝐻𝑛(𝑋)
(or𝐻𝑛(𝑋; 𝑅)), are called the reduced homology 𝑅-modules and they satisfy

𝐻𝑛(𝑋) = {
𝐻0(𝑋) ⊕ 𝑅, if 𝑛 = 0,
𝐻𝑛(𝑋), if 𝑛 > 0.



1.1 Homology 3

Proposition 1.7. Let𝑋 = ⋃
𝑖∈𝛪
𝑋𝑖 be the decomposition of𝑋 into its path-connected components𝑋𝑖, 𝑖 ∈ 𝐼.

(i) There is an isomorphism𝐻𝑛(𝑋) ≅ ⨁
𝑖∈𝛪
𝐻𝑛(𝑋𝑖).

(ii) 𝐻0(𝑋) ≅ ⨁
𝑖∈𝛪
𝑅.

(iii) If𝑋 is path-connected, then𝐻1(𝑋;Z) ≅ 𝜋1(𝑋)
𝛢𝑏.

Definition 1.8. A continuous map 𝑓 ∶ 𝑋 → 𝑌 induces a family of homomorphisms

𝐶𝑛(𝑓) ∶ 𝐶𝑛(𝑋) → 𝐶𝑛(𝑌)

by precomposition. Namely, 𝐶𝑛(𝑓) maps 𝜎 ∶ Δ𝑛 → 𝑋 to 𝑓𝜎 ∶ Δ𝑛 → 𝑋 → 𝑌 and as usual this is
extended linearly to 𝑛-chains.

This family of morphisms makes the diagram

⋯ 𝐶𝑛+1(𝑋) 𝐶𝑛(𝑋) 𝐶𝑛−1(𝑋) ⋯

⋯ 𝐶𝑛+1(𝑌) 𝐶𝑛(𝑌) 𝐶𝑛−1(𝑌) ⋯

𝜕 𝜕

𝐶𝑛+1(𝑓)

𝜕

𝐶𝑛(𝑓)

𝜕

𝐶𝑛−1(𝑓)

𝜕 𝜕 𝜕 𝜕

commute. Hence𝐶•(𝑓) is a chainmap and it inducesmorphisms in homology𝐻𝑛(𝑓) ∶ 𝐻𝑛(𝑋) → 𝐻𝑛(𝑌).
We may also write 𝑓∗ to denote 𝐶𝑛(𝑓) or𝐻𝑛(𝑓) for any value of 𝑛 as long as its meaning is clear from the
context.

Remark 1.9. 𝐻𝑛 is a covariant functor between the category of topological spaces and the category of
𝑅-modules, i.e. 𝐻𝑛(id) = id and𝐻𝑛(𝑓𝑔) = 𝐻𝑛(𝑓)𝐻𝑛(𝑔) for 𝑔 ∶ 𝑋 → 𝑌, 𝑓 ∶ 𝑌 → 𝑍.

Theorem 1.10. If two maps 𝑓, 𝑔 ∶ 𝑋 → 𝑌 are homotopic, then they induce the same homomorphisms in
homology, i.e. 𝐻𝑛(𝑓) = 𝐻𝑛(𝑔).

Corollary 1.11. If 𝑓 ∶ 𝑋 → 𝑌 is a homotopy equivalence, then𝐻𝑛(𝑓) ∶ 𝐻𝑛(𝑋) → 𝐻𝑛(𝑌) is an isomor-
phism.

Let us now generalize the definition of homology to that of relative homology.

Definition 1.12. Let 𝐴 ⊆ 𝑋 (with the induced topology) and let 𝐶𝑛(𝑋, 𝐴) ∶= 𝐶𝑛(𝑋)/𝐶𝑛(𝐴) (where
𝐶𝑛(𝐴) is identified with 𝐶𝑛(𝑖)(𝐶𝑛(𝐴)), 𝑖 ∶ 𝐴 ↪ 𝑋 the inclusion map). Since 𝜕 ∶ 𝐶𝑛(𝑋) → 𝐶𝑛−1(𝑋)
takes 𝐶𝑛(𝐴) to 𝐶𝑛−1(𝐴), we have well-defined morphisms 𝜕 ∶ 𝐶𝑛(𝑋, 𝐴) → 𝐶𝑛−1(𝑋, 𝐴) satisfying 𝜕

2
= 0.

Thus, we have a chain complex

⋯ 𝐶𝑛(𝑋, 𝐴) 𝐶𝑛−1(𝑋, 𝐴) ⋯ 𝐶0(𝑋, 𝐴) 0
𝜕𝑛+1 𝜕𝑛 𝜕𝑛−1 𝜕1 𝜕0

that allowsus todefine the𝑛𝑡ℎ (singular) relative homology𝑅-module of (𝑋, 𝐴) as𝐻𝑛(𝑋, 𝐴) ∶= ker 𝜕𝑛/ im 𝜕𝑛+1.
Again, ifwewant tomake explicit the ring𝑅weareworkingwith,wewillwrite𝐻𝑛(𝑋, 𝐴; 𝑅), 𝐶𝑛(𝑋, 𝐴; 𝑅).

Remark 1.13. Let𝑍𝑛(𝑋, 𝐴) be the submodule of𝐶𝑛(𝑋) consisting of the 𝑛-chains 𝛼 ∈ 𝐶𝑛(𝑋) such that
𝜕𝛼 ∈ 𝐶𝑛−1(𝐴). We call its elements relative 𝑛-cycles.

Let 𝐵𝑛(𝑋, 𝐴) be the submodule of𝐶𝑛(𝑋) consisting of the 𝑛-chains 𝛼 ∈ 𝐶𝑛(𝑋) for which there is an
𝑛-chain 𝛽 ∈ 𝐶𝑛(𝐴) such that 𝛼 − 𝛽 is an 𝑛-boundary on𝑋. We call its elements relative 𝑛-boundaries.

The first isomorphism theorem implies𝐻𝑛(𝑋, 𝐴) ≅ 𝑍𝑛(𝑋, 𝐴)/𝐵𝑛(𝑋, 𝐴), which is sometimes a nicer
description of the relative homology modules.



4 Preliminary topics

Definition 1.14. A continuous map 𝑓 ∶ (𝑋, 𝐴) → (𝑌, 𝐵) (i.e. 𝑓 ∶ 𝑋 → 𝑌 and 𝑓(𝐴) ⊆ 𝐵) induces
a family of chain maps 𝐶𝑛(𝑓) ∶ 𝐶𝑛(𝑋, 𝐴) → 𝐶𝑛(𝑌, 𝐵) by precomposition and this induces homomor-
phisms in homology𝐻𝑛(𝑓) ∶ 𝐻𝑛(𝑋, 𝐴) → 𝐻𝑛(𝑌, 𝐵). As before, we may also write 𝑓∗ to denote any of
these homomorphisms.

Theorem 1.15. If two maps 𝑓, 𝑔 ∶ (𝑋, 𝐴) → (𝑌, 𝐵) are homotopic through maps of pairs (𝑋, 𝐴) →
(𝑌, 𝐵), then they induce the same homomorphism, i.e. 𝐻𝑛(𝑓) = 𝐻𝑛(𝑔) ∶ 𝐻𝑛(𝑋, 𝐴) → 𝐻𝑛(𝑌, 𝐵).

Lemma 1.16. A short exact sequence of chain complexes

0 𝐴• 𝐵• 𝐶• 0,𝑖 𝑗

where 𝑖 and 𝑗 are chain maps, naturally induces a long exact sequence in homology

⋯ 𝐻𝑛(𝐴) 𝐻𝑛(𝐵) 𝐻𝑛(𝐶) 𝐻𝑛−1(𝐴) 𝐻𝑛−1(𝐵) ⋯
𝛨𝑛(𝑖) 𝛨𝑛(𝑗) 𝜕 𝛨𝑛−1(𝑖)

where 𝜕 ∶ 𝐻𝑛(𝐶) → 𝐻𝑛−1(𝐴) is the map given by the following diagram chasing: take [𝑐] ∈ 𝐻𝑛(𝐶) with
𝑐 ∈ 𝑍𝑛(𝐶); choose 𝑏 ∈ 𝐵𝑛 such that 𝑗(𝑏) = 𝑐; choose 𝑎 ∈ 𝐴𝑛−1 such that 𝑖(𝑎) = 𝜕𝑏; define 𝜕[𝑐] = [𝑎].

Remark 1.17. Here the word naturally refers to the fact that if

0 𝐴• 𝐵• 𝐶• 0

0 𝐴′
• 𝐵′• 𝐶′

• 0

𝑖

𝛼

𝑗

𝛽 𝛾

𝑖′ 𝑗′

commutes, then the induced diagram

⋯ 𝐻𝑛(𝐴) 𝐻𝑛(𝐵) 𝐻𝑛(𝐶) 𝐻𝑛−1(𝐴) ⋯

⋯ 𝐻𝑛(𝐴
′) 𝐻𝑛(𝐵

′) 𝐻𝑛(𝐶
′) 𝐻𝑛−1(𝐴

′) ⋯

𝛨𝑛(𝑖)

𝛨𝑛(𝛼)

𝛨𝑛(𝑗)

𝛨𝑛(𝛽)

𝜕

𝛨𝑛(𝛾) 𝛨𝑛−1(𝛼)

𝛨𝑛(𝑖
′) 𝛨𝑛(𝑗

′) 𝜕

also commutes. This property is commonly known as naturality or functoriality in the literature.

Corollary 1.18. For𝐴 ⊆ 𝑋, the short exact sequence

0 𝐶•(𝐴) 𝐶•(𝑋) 𝐶•(𝑋, 𝐴) 0𝑖 𝑗

(where 𝑖 is the inclusion and 𝑗 is the projection) naturally induces a long exact sequence in homology

⋯ → 𝐻𝑛(𝐴) 𝐻𝑛(𝑋) 𝐻𝑛(𝑋, 𝐴) 𝐻𝑛−1(𝐴) → ⋯ → 𝐻0(𝑋, 𝐴) → 0.
𝛨𝑛(𝑖) 𝛨𝑛(𝑗) 𝜕

Remark 1.19. Using augmented chain complexes, the previous long exact sequence can be terminated
with

⋯ 𝐻1(𝑋, 𝐴) 𝐻0(𝐴) 𝐻0(𝑋) 𝐻0(𝑋, 𝐴) 0.

Theorem 1.20. (Universal coefficient theorem for homology) Let (𝐶•, 𝜕•) be a chain complex of free Z-
modules and let 𝑅 be ring. Then, there are natural short exact sequences

0 𝐻𝑛(𝐶) ⊗ 𝑅 𝐻𝑛(𝐶; 𝑅) Tor(𝐻𝑛−1(𝐶), 𝑅) 0

for every integer 𝑛 and all these sequences split.
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Theorem 1.21. (Excision) Let𝑍 ⊆ 𝐴 ⊆ 𝑋 such that the closure of𝑍 is contained in the interior of𝐴. Then
the inclusion 𝑖 ∶ (𝑋 ∖ 𝑍,𝐴 ∖ 𝑍) ↪ (𝑋,𝐴) induces isomorphisms in homology

𝐻𝑛(𝑖) ∶ 𝐻𝑛(𝑋 ∖ 𝑍,𝐴 ∖ 𝑍) → 𝐻𝑛(𝑋, 𝐴).

Theorem 1.22. (Mayer-Vietoris) Let𝐴, 𝐵 ⊆ 𝑋 such that𝐴∩𝐵 ≠ ∅ and𝑋 is the union of the interiors of
𝐴 and 𝐵. Then, there is a natural long exact sequence called theMayer-Vietoris sequence

⋯ 𝐻𝑛(𝐴 ∩ 𝐵) 𝐻𝑛(𝐴) ⊕ 𝐻𝑛(𝐵) 𝐻𝑛(𝑋)

𝐻𝑛−1(𝐴 ∩ 𝐵) 𝐻𝑛−1(𝐴) ⊕ 𝐻𝑛−1(𝐵) 𝐻𝑛−1(𝑋) ⋯

𝐻1(𝑋) 𝐻0(𝐴 ∩ 𝐵) 𝐻0(𝐴) ⊕ 𝐻0(𝐵) 𝐻0(𝑋) 0

Φ Ψ

𝜕

Φ Ψ

where

(i) 𝑖𝛢 ∶ 𝐴 ∩ 𝐵 ↪ 𝐴 and 𝑖𝛣 ∶ 𝐴 ∩ 𝐵 ↪ 𝐵 are the inclusions and Φ(𝛾) = (𝐻𝑛(𝑖𝛢)(𝛾), −𝐻𝑛(𝑖𝛣)(𝛾)) for
𝛾 ∈ 𝐻𝑛(𝐴 ∩ 𝐵);

(ii) 𝑗𝛢 ∶ 𝐴 ↪ 𝑋 and 𝑗𝛣 ∶ 𝐵 ↪ 𝑋 are the inclusions andΨ(𝛼, 𝛽) = 𝐻𝑛(𝑗𝛢)(𝛼)+𝐻𝑛(𝑗𝛣)(𝛽) for 𝛼 ∈ 𝐻𝑛(𝐴)
and 𝛽 ∈ 𝐻𝑛(𝐵);

(iii) Any 𝛾 ∈ 𝐻𝑛(𝑋) can be represented by a cycle of the form 𝑎 + 𝑏 with 𝑎 ∈ 𝐶𝑛(𝐴) and 𝑏 ∈ 𝐶𝑛(𝐵). Then
take 𝜕𝛾 = [𝜕𝑎] = [−𝜕𝑏].

Remark 1.23. One can analogously define relativeMayer-Vietoris sequences. Let (𝑋, 𝑌) = (𝐴 ∪𝐵, 𝐶 ∪
𝐷)with 𝑌 ⊆ 𝑋,𝐶 ⊆ 𝐴,𝐷 ⊆ 𝐵 such that𝑋 is the union of the interiors of𝐴 and 𝐵 and 𝑌 is the union of
the interiors of𝐶 and𝐷. Then, the relative Mayer-Vietoris sequence is given by

⋯ 𝐻𝑛(𝐴 ∩ 𝐵, 𝐶 ∩ 𝐷) 𝐻𝑛(𝐴, 𝐶) ⊕ 𝐻𝑛(𝐵,𝐷) 𝐻𝑛(𝑋, 𝑌)

𝐻𝑛−1(𝐴 ∩ 𝐵, 𝐶 ∩ 𝐷) ⋯ 𝐻0(𝑋, 𝑌) 0.

Φ Ψ

𝜕

As an application of these results, let us compute the homology of a point and the homology of the
spheres.

Example 1.24. (Homology of a point) Let 𝑋 = {𝑝}. Since there is only one map Δ𝑛 → 𝑋, we have
𝐶𝑛(𝑋) ≅ 𝑅 for every 𝑛 ≥ 0. The boundary map 𝜕𝑛 will then be the identity or the zero map depending
on the parity of 𝑛. Namely:

𝜕𝑛 = {
0, 𝑛 = 0 or 𝑛 odd.
id, otherwise.

Thus, we have the following chain complex

⋯ 𝑅 𝑅 𝑅 𝑅 0𝑖𝑑 0 𝑖𝑑 0 0

and we finally get

𝐻𝑛({𝑝}) = {
𝑅, 𝑛 = 0
0, otherwise

or simply𝐻𝑛({𝑝}) = 0 for every 𝑛 ≥ 0.
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Example 1.25. (Homology of the spheres) By the previous example and Proposition 1.7 we already got

𝐻𝑛(𝕊
0) = {

𝑅 ⊕ 𝑅, 𝑛 = 0.
0, 𝑛 > 0.

𝐻0(𝕊
𝑚) = {

𝑅 ⊕ 𝑅, 𝑚 = 0.
𝑅, 𝑚 > 0.

We now set𝑋 = 𝕊𝑚(𝑚 > 0), 𝐴 = 𝕊𝑚 ∖ {north pole}, 𝐵 = 𝕊𝑚 ∖ {south pole}. Notice that𝐴 and 𝐵 can
be deformation retracted to a point, so𝐻𝑛(𝐴) = 𝐻𝑛(𝐵) = 0 for 𝑛 > 0 and𝐻0(𝐴) = 𝐻0(𝐵) = 𝑅. Also
𝐴 ∩ 𝐵 can be deformation retracted to the equator, i.e. to 𝕊𝑚−1. We then have aMayer-Vietoris sequence

⋯ 0 𝐻𝑛(𝕊
𝑚) 𝐻𝑛−1(𝕊

𝑚−1) 0

⋯ 0 𝐻2(𝕊
𝑚) 𝐻1(𝕊

𝑚−1) 0

𝐻1(𝕊
𝑚) 𝐻0(𝕊

𝑚−1) 0

0 0.

In particular,𝐻𝑛(𝕊
𝑚) ≅ 𝐻𝑛−1(𝕊

𝑚−1) for 𝑛 ≥ 1,𝑚 ≥ 1. By induction and the previous facts, we have

𝐻𝑛(𝕊
𝑚) = {

𝑅, if 𝑛 = 𝑚 > 0,
0, if 𝑛 ≠ 𝑚.

1.2 Orientation of Manifolds

Unless otherwise stated, let𝑀 be an𝑚-dimensional topological manifold. Given a subspace𝐴 ⊆ 𝑀
we will use the notation𝐻𝑛(𝑀|𝐴; 𝑅) = 𝐻𝑛(𝑀,𝑀 ∖ 𝐴; 𝑅). Whenever 𝐴 is a single point {𝑥}, we will
write𝐻𝑛(𝑀|𝑥; 𝑅) = 𝐻𝑛(𝑀|{𝑥}; 𝑅).

Remark 1.26. Notice that for 𝑥 ∈ 𝑀we have a chain of isomorphisms

𝐻𝑖(𝑀|𝑥; 𝑅) ≅ 𝐻𝑖(R
𝑚,R𝑚 ∖ {0}; 𝑅) ≅ 𝐻𝑖−1(R

𝑚 ∖ {0}; 𝑅) ≅ 𝐻𝑖−1(𝕊
𝑚−1; 𝑅) ≅ {

𝑅, if 𝑖 = 𝑚,
0, if 𝑖 ≠ 𝑚.

Analogously, for a ball of finite radius 𝐵 ⊆ 𝑀, we have

𝐻𝑖(𝑀|𝐵; 𝑅) ≅ {
𝑅, if 𝑖 = 𝑚,
0, if 𝑖 ≠ 𝑚.

This leads to the following definition.

Definition 1.27. A local 𝑅-orientation of𝑀 at a point 𝑥 ∈ 𝑀 is a choice of a generator (i.e. invertible
element) 𝜇𝑥 ∈ 𝐻𝑚(𝑀|𝑥; 𝑅) ≅ 𝑅.

Let𝑀𝑅 = {𝜇𝑥 ∶ 𝑥 ∈ 𝑀, 𝜇𝑥 ∈ 𝐻𝑛(𝑀|𝑥; 𝑅)}. We wish to equip𝑀𝑅 with a topology by specifying
a basis of open sets. For every open ball of finite radius 𝐵 ⊆ 𝑀 and an element 𝜇𝛣 ∈ 𝐻𝑚(𝑀|𝐵; 𝑅), let
𝑈(𝜇𝛣) = {𝜇𝑥 ∈ 𝑀𝑅 ∶ 𝑥 ∈ 𝐵, 𝑗𝑥𝛣 (𝜇𝛣) = 𝜇𝑥} where 𝑗

𝑥
𝛣 ∶ 𝐻𝑚(𝑀|𝐵; 𝑅) → 𝐻𝑚(𝑀|𝑥; 𝑅) is the map induced

by inclusion. The family {𝑈(𝜇𝛣)}𝛣 for varying𝐵 and 𝜇𝛣 is the basis of a topology on𝑀𝑅. One can check
that this topological space is locally homeomorphic toR𝑚, Hausdorff and second-countable (as long as
𝑅 is countable), so𝑀𝑅 is a topological 𝑚-manifold. Also, the projection 𝑝 ∶ 𝑀𝑅 → 𝑀, 𝑝(𝜇𝑥) = 𝑥 is a
covering space.
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Definition 1.28. A (global)𝑅-orientation of𝑀 is a continuous section of 𝑝 ∶ 𝑀𝑅 →𝑀 that assigns to
each 𝑥 ∈ 𝑀 a generator 𝜇𝑥 ∈ 𝐻𝑚(𝑀|𝑥; 𝑅). If𝑀 admits an𝑅-orientation, we say that𝑀 is𝑅-orientable.
If, in addition, an 𝑅-orientation of𝑀 has been fixed, we say that𝑀 is 𝑅-oriented.

Theorem 1.29. Let𝑀 be a closed connected𝑚-manifold. Then:

(i) If 𝑀 is 𝑅-orientable, the map 𝑗𝑥 ∶ 𝐻𝑚(𝑀;𝑅) → 𝐻𝑚(𝑀|𝑥; 𝑅) ≅ 𝑅 induced by the inclusion
(𝑀,∅) ↪ (𝑀,𝑀 ∖ {𝑥}) is an isomorphism for all 𝑥 ∈ 𝑀.

(ii) If𝑀 is not 𝑅-orientable, the map 𝑗𝑥 ∶ 𝐻𝑚(𝑀;𝑅) → 𝐻𝑚(𝑀|𝑥; 𝑅) ≅ 𝑅 induced by the inclusion
(𝑀,∅) ↪ (𝑀,𝑀 ∖ {𝑥}) is injective with image {𝑟 ∈ 𝑅 ∶ 2𝑟 = 0} for all 𝑥 ∈ 𝑀.

(iii) 𝐻𝑖(𝑀;𝑅) = 0 for 𝑖 > 𝑚.

Definition 1.30. An element of𝐻𝑚(𝑀;𝑅) whose image by 𝑗𝑥 is a generator of𝐻𝑚(𝑀|𝑥; 𝑅) for every
𝑥 ∈ 𝑀 is called a fundamental class of𝑀 with coefficients in 𝑅. By the theorem, a connected manifold
𝑀 has a fundamental class with coefficients in 𝑅 if, and only if, it is closed and 𝑅-orientable.

Remark 1.31. If𝑅 = Z, we will omit any reference to the ring in the concepts defined above and below.
For example, we will simply say orientation, orientable, oriented instead of Z-orientation, Z-orientable,
Z-oriented, respectively.

One can also orientate manifolds with boundary using homology classes. We restrict ourselves to the
differentiable and compact case, as this is the only case we will need for this work. From now on until the
end of this section, let𝑀 be a smooth, compact𝑚-manifold with boundary.

Definition 1.32. An 𝑅-orientation of𝑀 is an 𝑅-orientation of its interior 𝑀̊ = 𝑀 ∖ 𝜕𝑀.

The following result is of great importance for this section and next ones.

Theorem 1.33. (Smooth collar neighborhood) There is an open neighborhood of 𝜕𝑀 in𝑀which is diffeo-
morphic to 𝜕𝑀 × [0, 1) under a map that identifies 𝜕𝑀 with 𝜕𝑀 × {0}. Such a neighborhood is called a
collar neighborhood of𝑀.

As a consequence, the inclusion 𝑀̊ ↪ 𝑀 is a homotopy equivalence.

Proposition 1.34. An 𝑅-orientation of𝑀 determines an 𝑅-orientation of 𝜕𝑀.

Proofs of these results and of the one below can be found in chapter 21 of [May99].

Proposition 1.35. If𝑀 is 𝑅-oriented, then the connecting homomorphism

𝜕 ∶ 𝐻𝑛(𝑀, 𝜕𝑀;𝑅) → 𝐻𝑛−1(𝜕𝑀;𝑅)

of the long exact sequence of the pair (𝑀, 𝜕𝑀) is an isomorphism.

These last propositions allow us to make the following definition.

Definition 1.36. If 𝑀 is 𝑅-oriented and [𝜕𝑀] is the fundamental class for 𝜕𝑀 with coefficients in
𝑅, we define the fundamental class of𝑀 with coefficients in 𝑅 to be the unique element [𝑀, 𝜕𝑀] ∈
𝐻𝑛(𝑀, 𝜕𝑀;𝑅) that satisfies 𝜕[𝑀, 𝜕𝑀] = [𝜕𝑀].
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1.3 Cohomology

Throughout this section let𝑋, 𝑌 be non-empty topological spaces and let 𝑅 be a commutative ring
with unit. The first definitions and results below are purely algebraic with no topology involved.

Definition 1.37. A cochain complex (𝐶•, 𝛿•) is a sequenceof𝑅-modules𝐶𝑛 and𝑅-linearmaps 𝛿𝑛 ∶ 𝐶𝑛−1 → 𝐶𝑛

that satisfy 𝛿𝑛+1 ∘ 𝛿𝑛 = 0. As with chain complexes, we will sometimes drop the index 𝑛 of the maps 𝛿𝑛

and write

⋯ 𝐶𝑛−1 𝐶𝑛 𝐶𝑛+1 ⋯𝛿 𝛿

to denote the complex (𝐶•, 𝛿•). The 𝑛𝑡ℎ cohomology 𝑅-module of (𝐶•, 𝛿•) is defined to be the quotient
𝐻𝑛(𝐶) = 𝐻𝑛(𝐶•, 𝛿•) ∶= ker 𝛿𝑛+1/ im 𝛿𝑛.

Analogously to chain complexes, a cochain map 𝑓• ∶ (𝐶•, 𝛿•) → (𝐷•, 𝛿•) is a collection of 𝑅-linear
maps 𝑓𝑛 ∶ 𝐶𝑛 → 𝐷𝑛 such that the diagram

⋯ 𝐶𝑛−1 𝐶𝑛 𝐶𝑛+1 ⋯

⋯ 𝐷𝑛−1 𝐷𝑛 𝐷𝑛+1 ⋯

𝛿

𝑓𝑛−1

𝛿

𝑓𝑛 𝑓𝑛+1

𝛿 𝛿

commutes. As a consequence, 𝑓• induces well-defined 𝑅-linear maps in cohomology

𝐻𝑛(𝑓•) ∶ 𝐻𝑛(𝐶) → 𝐻𝑛(𝐷)
[𝑐] ↦ [𝑓𝑛(𝑐)].

Given an 𝑅-module 𝐴, recall that its dual is the 𝑅-module 𝐴∗ ∶= Hom𝑅(𝐴, 𝑅). Furthermore, given
an 𝑅-linear map 𝛼 ∶ 𝐴 → 𝐵 between 𝑅-modules, the dual map of 𝛼 is defined as

𝛼∗ ∶ 𝐵∗ → 𝐴∗

𝜑 ↦ 𝜑 ∘ 𝛼.

Remark 1.38. It is worth noting that we can associate a cochain complex (𝐶•, 𝛿•) to any chain complex
(𝐶•, 𝜕•). Indeed, we may take 𝐶𝑛 to be 𝐶∗

𝑛 , and 𝛿
𝑛 to be 𝜕∗𝑛 . A chain map 𝑓• ∶ (𝐶•, 𝜕•) → (𝐷•, 𝜕•)may also

be associated to a cochain map 𝑓• ∶ (𝐷•, 𝛿•) → (𝐶•, 𝛿•) by taking 𝑓𝑛 to be 𝑓∗𝑛 . This construction allows
us to define the 𝑛𝑡ℎ cohomology𝑅-module of (𝐶•, 𝜕•) as the 𝑛

𝑡ℎ cohomology𝑅-module of (𝐶•, 𝛿•), denoted
by𝐻𝑛(𝐶•, 𝜕•), or simply𝐻𝑛(𝐶).

Homology and cohomology modules of free chain complexes are related by the following result.

Theorem 1.39. (Universal coefficient theorem for cohomology) Assume that𝑅 is a principal ideal domain.
Let (𝐶•, 𝜕•) be a chain complex where every 𝐶𝑛 is a free 𝑅-module. Then, for every integer 𝑛 there is a split
short exact sequence

0 Ext𝑅(𝐻𝑛−1(𝐶), 𝑅) 𝐻𝑛(𝐶; 𝑅) Hom𝑅(𝐻𝑛(𝐶), 𝑅) 0.ℎ

Here, the map ℎ is defined by taking every [𝜑] ∈ 𝐻𝑛(𝐶; 𝑅) to the assignment

ℎ([𝜑]) ∶ 𝐻𝑛(𝐶) → 𝑅
[𝛼] ↦ ⟨[𝜑], [𝛼]⟩ ∶= 𝜑(𝛼)

Remark 1.40. The fact that these sequences split implies that

𝐻𝑛(𝐶; 𝑅) ≅ Ext𝑅(𝐻𝑛−1(𝐶), 𝑅) ⊕Hom𝑅(𝐻𝑛(𝐶), 𝑅),

so the cohomologymodules of a chain complex of freemodules are determined by its homologymodules,
although not naturally.



1.3 Cohomology 9

Remark 1.38 also enables us to make the jump to cohomology of topological spaces.

Definition 1.41. The 𝑛𝑡ℎ cohomology 𝑅-module of 𝑋 is simply the 𝑛𝑡ℎ cohomology 𝑅-module of the
chain complex (𝐶•(𝑋; 𝑅), 𝜕•).

For clarity, we now unravel this definition. We write 𝐶𝑛(𝑋; 𝑅) = 𝐶𝑛(𝑋; 𝑅)
∗ and call its elements 𝑛-

cochains. We call 𝛿𝑛 = 𝜕∗𝑛 ∶ 𝐶
𝑛−1(𝑋; 𝑅) → 𝐶𝑛(𝑋; 𝑅) the coboundary map. It explicitly acts on a cochain

𝜑 ∈ 𝐶𝑛(𝑋; 𝑅) by

𝛿𝜑(𝜎) =
𝑛+1
∑
𝑖=0

(−1)𝑖𝜑(𝜎(𝑖)), for any simplex 𝜎 ∶ Δ𝑛+1 → 𝑋.

Let 𝑍𝑛(𝑋; 𝑅) = ker 𝛿𝑛+1 and call its elements 𝑛-cocycles. Let 𝐵𝑛(𝑋; 𝑅) = im 𝛿𝑛 and call its elements

𝑛-coboundaries. Finally, the 𝑛𝑡ℎ cohomology 𝑅-module of𝑋 is then𝐻𝑛(𝑋; 𝑅) = 𝑍𝑛(𝑋; 𝑅)/𝐵𝑛(𝑋; 𝑅).

Definition 1.42. Let 𝐴 ⊆ 𝑋. The 𝑛𝑡ℎ relative cohomology 𝑅-module of the pair (𝑋, 𝐴), denoted by

𝐻𝑛(𝑋, 𝐴; 𝑅), is the 𝑛𝑡ℎ cohomology𝑅-module of the chain complex (𝐶•(𝑋, 𝐴; 𝑅), 𝜕•) ofDefinition 1.12.
This definition may be unraveled in a similar manner as the one above.

The following facts are just translations of the results mentioned in Section 1.1 into cohomology.

Definition 1.43. A continuous map 𝑓 ∶ (𝑋, 𝐴) → (𝑌, 𝐵) induces a chain map 𝐶•(𝑓) (cf. Defini-
tion 1.14). By taking the duals 𝐶𝑛(𝑓) ∶= 𝐶𝑛(𝑓)

∗ ∶ 𝐶𝑛(𝑌, 𝐵; 𝑅) → 𝐶𝑛(𝑋, 𝐴; 𝑅), we obtain a cochain
map 𝐶•(𝑓) that induces 𝑅-linear maps in cohomology𝐻𝑛(𝑓) ∶ 𝐻𝑛(𝑌, 𝐵; 𝑅) → 𝐻𝑛(𝑋, 𝐴; 𝑅). We may
also denote𝐶𝑛(𝑓) and𝐻𝑛(𝑓) by 𝑓∗, as long as the meaning is clear from the context.

Remark 1.44. 𝐻𝑛 is a contracovariant functor between the category of topological spaces and the cate-
gory of 𝑅-modules, i.e. 𝐻𝑛(id) = id and𝐻𝑛(𝑓𝑔) = 𝐻𝑛(𝑔)𝐻𝑛(𝑓) for 𝑔 ∶ 𝑋 → 𝑌, 𝑓 ∶ 𝑌 → 𝑍.

Theorem 1.45. If two maps 𝑓, 𝑔 ∶ (𝑋, 𝐴) → (𝑌, 𝐵) are homotopic through maps from (𝑋, 𝐴) to (𝑌, 𝐵),
then they induce the same homomorphisms in cohomology, i.e. 𝐻𝑛(𝑓) = 𝐻𝑛(𝑔).

Corollary 1.46. Dualizing the short exact sequence of Corollary 1.18, we obtain a short exact sequence

0 𝐶𝑛(𝐴; 𝑅) 𝐶𝑛(𝑋; 𝑅) 𝐶𝑛(𝑋, 𝐴; 𝑅) 0𝑖∗ 𝑗∗

which induces a long exact sequence in cohomology

⋯ 𝐻𝑛(𝑋, 𝐴; 𝑅) 𝐻𝑛(𝑋; 𝑅) 𝐻𝑛(𝐴; 𝑅) 𝐻𝑛+1(𝑋, 𝐴; 𝑅) ⋯
𝛨𝑛(𝑗) 𝛨𝑛(𝑖) 𝛿

Theorem 1.47. (Excision) Let𝑍 ⊆ 𝐴 ⊆ 𝑋 such that the closure of𝑍 is contained in the interior of𝐴. Then,
the inclusion 𝑖 ∶ (𝑋 ∖ 𝑍,𝐴 ∖ 𝑍) ↪ (𝑋,𝐴) induces isomorphisms in cohomology

𝐻𝑛(𝑖) ∶ 𝐻𝑛(𝑋, 𝐴; 𝑅) → 𝐻𝑛(𝑋 ∖ 𝑍,𝐴 ∖ 𝑍; 𝑅)

for all 𝑛 ≥ 0.

Theorem 1.48. (Mayer-Vietoris) Let𝐴, 𝐵 ⊆ 𝑋 such that𝑋 is the union of the interiors of𝐴 and𝐵. Then,
there is a natural long exact sequence calledMayer-Vietoris sequence

⋯ 𝐻𝑛(𝑋; 𝑅) 𝐻𝑛(𝐴; 𝑅) ⊕ 𝐻𝑛(𝐵; 𝑅) 𝐻𝑛(𝐴 ∩ 𝐵; 𝑅)

𝐻𝑛+1(𝑋; 𝑅) ⋯
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Remark 1.49. One can analogously define relativeMayer-Vietoris sequences. Let (𝑋, 𝑌) = (𝐴 ∪𝐵, 𝐶 ∪
𝐷)with 𝑌 ⊆ 𝑋,𝐶 ⊆ 𝐴,𝐷 ⊆ 𝐵 such that𝑋 is the union of the interiors of𝐴 and 𝐵 and 𝑌 is the union of
the interiors of𝐶 and𝐷. Then the relative Mayer-Vietoris sequence is given by

⋯ 𝐻𝑛(𝑋, 𝑌; 𝑅) 𝐻𝑛(𝐴, 𝐶; 𝑅) ⊕ 𝐻𝑛(𝐵,𝐷; 𝑅) 𝐻𝑛(𝐴 ∩ 𝐵, 𝐶 ∩ 𝐷; 𝑅)

𝐻𝑛+1(𝑋, 𝑌; 𝑅) ⋯

Cup product

Let us now carry on with new concepts that could not be considered in homology.

Definition 1.50. Consider the affine maps

𝜆𝑘,𝑙 ∶ Δ
𝑘 → Δ𝑘+𝑙

𝜌𝑘,𝑙 ∶ Δ
𝑙 → Δ𝑘+𝑙

determined by
𝜆𝑘,𝑙(𝑒𝑖) = 𝑒𝑖 for 0 ≤ 𝑖 ≤ 𝑘,

𝜌𝑘,𝑙(𝑒𝑖) = 𝑒𝑘+𝑖 for 0 ≤ 𝑖 ≤ 𝑙.

Let𝜑 ∈ 𝐶𝑘(𝑋; 𝑅),𝜓 ∈ 𝐶𝑙(𝑋; 𝑅). The cup product 𝜑 ` 𝜓 ∈ 𝐶𝑘+𝑙(𝑋; 𝑅) is the (𝑘+𝑙)-cochain determined
by

(𝜑 ` 𝜓)(𝜎) = 𝜑(𝜎𝜆𝑘,𝑙)𝜓(𝜎𝜌𝑘,𝑙)

for every (𝑘 + 𝑙)-simplex 𝜎 ∶ Δ𝑘+𝑙 → 𝑋.

Lemma 1.51. Let 𝜑 ∈ 𝐶𝑘(𝑋; 𝑅), 𝜓 ∈ 𝐶𝑙(𝑋; 𝑅). Then

𝛿(𝜑 ` 𝜓) = 𝛿𝜑 ` 𝜓 + (−1)𝑘𝜑 ` 𝛿𝜓.

Remark 1.52. As a consequence of this lemma, the cup product induces a well-defined, associative and
distributive map

`∶ 𝐻𝑘(𝑋; 𝑅) × 𝐻𝑙(𝑋; 𝑅) → 𝐻𝑘+𝑙(𝑋; 𝑅)

also called cup product. One can analogously define a relative cup product

`∶ 𝐻𝑘(𝑋, 𝐴; 𝑅) × 𝐻𝑙(𝑋, 𝐵; 𝑅) → 𝐻𝑘+𝑙(𝑋, 𝐴 ∪ 𝐵; 𝑅).

Proposition 1.53. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map. Then, for all 𝑘, 𝑙 ≥ 0, we have

𝐻𝑘+𝑙(𝑓)(𝛼 ` 𝛽) = 𝐻𝑘(𝑓)(𝛼) ` 𝐻𝑙(𝑓)(𝛽)

and analogously for the relative case. In fact, this is true at the level of cochains.

Remark 1.54. 𝐻∗(𝑋, 𝐴; 𝑅) = ⨁
𝑛≥0

𝐻𝑛(𝑋, 𝐴; 𝑅) is an associative ringwith unit1 with product defined by

(∑𝑖 𝛼𝑖)(∑𝑗 𝛽𝑗) = ∑𝑖,𝑗 𝛼𝑖 ` 𝛽𝑖. Similarly, we denote by𝐻∏(𝑋, 𝐴; 𝑅) the ring that consists of (possibly
infinite) formal sums 𝑎0 + 𝑎1 + …, where 𝑎𝑖 ∈ 𝐻

𝑖(𝑋, 𝐴; 𝑅). The product on𝐻∏(𝑋, 𝐴; 𝑅) is defined in
the same way.

Proposition 1.55. Let 𝛼 ∈ 𝐻𝑘(𝑋, 𝐴; 𝑅) and 𝛽 ∈ 𝐻𝑙(𝑋, 𝐴; 𝑅). Then 𝛼 ` 𝛽 = (−1)𝑘𝑙𝛽 ` 𝛼.
1or even more: an 𝑅-algebra
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Definition 1.56. The cross product is the map

𝐻𝑘(𝑋; 𝑅) × 𝐻𝑙(𝑌; 𝑅) → 𝐻𝑘+𝑙(𝑋 × 𝑌; 𝑅)
(𝑎, 𝑏) ↦ 𝑎 × 𝑏 ∶= 𝐻𝑘(𝑝𝛸)(𝑎) ` 𝐻𝑙(𝑝𝑌)(𝑏)

where 𝑝𝛸 ∶ 𝑋 × 𝑌 → 𝑋 and 𝑝𝑌 ∶ 𝑋 × 𝑌 → 𝑌 are the projection maps. One can analogously define the
relative cross product

𝐻𝑘(𝑋, 𝐴; 𝑅) × 𝐻𝑙(𝑌, 𝐵; 𝑅) → 𝐻𝑘+𝑙(𝑋 × 𝑌, 𝐴 × 𝑌 ∪ 𝑋 × 𝐵; 𝑅)

Remark 1.57. Let𝑓1 ∶ 𝑋1 → 𝑌1,𝑓2 ∶ 𝑋2 → 𝑌2 be continuous and let𝑝
𝛸
𝑖 ∶ 𝑋1×𝑋2 → 𝑋𝑖,𝑝

𝑌
𝑖 ∶ 𝑌1×𝑌2 → 𝑌𝑖

be the projections. Then, the diagram

𝐶𝑘(𝑋1) × 𝐶
𝑙(𝑋2) 𝐶𝑘(𝑌1) × 𝐶

𝑙(𝑌2)

𝐶𝑘(𝑋1 × 𝑋2) × 𝐶
𝑙(𝑋1 × 𝑋2) 𝐶𝑘(𝑌1 × 𝑌2) × 𝐶

𝑙(𝑌1 × 𝑌2)

𝐶𝑘+𝑙(𝑋1 × 𝑋2) 𝐶𝑘+𝑙(𝑌1 × 𝑌2)

𝐶𝑘(𝑝𝛸1 )×𝐶
𝑙(𝑝𝛸2 )

𝐶𝑘(𝑓1)×𝐶
𝑙(𝑓2)

𝐶𝑘(𝑝𝑌1 )×𝐶
𝑙(𝑝𝑌2 )

` `

𝐶𝑘+𝑙(𝑓1×𝑓2)

commutes. Themiddle arrow is𝐶𝑘(𝑓1×𝑓2)×𝐶
𝑙(𝑓1×𝑓2). The upper square commutes because allmaps are

induced fromcontinuousmaps at the level of topological spaces, where the square clearly commutes. The
lower square commutes from Proposition 1.53. As a consequence, we have the following commutative
diagram in cohomology:

𝐻𝑘(𝑋1) × 𝐻
𝑙(𝑋2) 𝐻𝑘(𝑌1) × 𝐻

𝑙(𝑌2)

𝐻𝑘+𝑙(𝑋1 × 𝑋2) 𝐻𝑘+𝑙(𝑌1 × 𝑌2).

× ×

Similarly, the diagram in relative cohomology

𝐻𝑘(𝑋1, 𝐴1) × 𝐻
𝑙(𝑋2, 𝐴2) 𝐻𝑘(𝑌1, 𝐵1) × 𝐻

𝑙(𝑌2, 𝐵2)

𝐻𝑘+𝑙(𝑋1 × 𝑋2, 𝐴1 × 𝑋2 ∪ 𝑋1 × 𝐴2) 𝐻𝑘+𝑙(𝑌1 × 𝑌2, 𝐵1 × 𝑌2 ∪ 𝑌1 × 𝐵2)

× ×

also commutes.

Cap product

Definition 1.58. The cap product is the 𝑅-bilinear mapa∶ 𝐶𝑘(𝑋; 𝑅) × 𝐶
𝑙(𝑋; 𝑅) → 𝐶𝑘−𝑙(𝑋; 𝑅) (𝑘 ≥ 𝑙)

determined by
𝜎 a 𝜑 = 𝜑(𝜎𝜆𝑙,𝑘−𝑙)𝜎𝜌𝑙,𝑘−𝑙

for any 𝜑 ∈ 𝐶𝑙(𝑋; 𝑅) and any 𝑘-simplex 𝜎 ∶ Δ𝑘 → 𝑋.

Lemma 1.59. Let 𝜎 ∈ 𝐶𝑘(𝑋; 𝑅), 𝜑 ∈ 𝐶𝑙(𝑋; 𝑅). Then

𝜕(𝜎 a 𝜑) = (−1)𝑙(𝜕𝜎 a 𝜑 − 𝜎 a 𝛿𝜑).
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Remark 1.60. As a consequence of this lemma, the cap product induces a well-defined 𝑅-bilinear map

a∶ 𝐻𝑘(𝑋; 𝑅) × 𝐻
𝑙(𝑋; 𝑅) → 𝐻𝑘−𝑙(𝑋; 𝑅)

called cap product as well. Just as with the cup product, there are also relative cap products

a∶ 𝐻𝑘(𝑋, 𝐴; 𝑅) × 𝐻
𝑙(𝑋, 𝐴; 𝑅) → 𝐻𝑘−𝑙(𝑋; 𝑅),

a∶ 𝐻𝑘(𝑋, 𝐴; 𝑅) × 𝐻
𝑙(𝑋; 𝑅) → 𝐻𝑘−𝑙(𝑋, 𝐴; 𝑅).

Proposition 1.61. The cup product and the cap product are related by

𝜓(𝛼 a 𝜑) = (𝜑 ` 𝜓)(𝛼)

for every 𝜑 ∈ 𝐶𝑘(𝑋; 𝑅), 𝜓 ∈ 𝐶𝑙(𝑋; 𝑅), and 𝛼 ∈ 𝐶𝑘+𝑙(𝑋; 𝑅). In other words, the dual of

𝐶𝑘+𝑙(𝑋; 𝑅)
a𝜑
⟶𝐶𝑙(𝑋; 𝑅)

is the map

𝐶𝑙(𝑋; 𝑅)
𝜑`
⟶𝐶𝑘+𝑙(𝑋; 𝑅).

Poincaré duality

Theorem 1.62. (Poincaré duality) Let𝑀 be a closed 𝑅-orientable 𝑚-manifold with fundamental class
[𝑀] ∈ 𝐻𝑚(𝑀;𝑅). Then, the map

𝐷 ∶ 𝐻𝑘(𝑀;𝑅) ⟶ 𝐻𝑚−𝑘(𝑀;𝑅)
𝛼⟼ [𝑀] a 𝛼

is an isomorphism for every integer 𝑘.

There is also a relative version of this.

Theorem 1.63. (Relative Poincaré duality) Let𝑀 be a compact 𝑅-oriented𝑚-manifold with boundary.
Then, the cap product by [𝑀, 𝜕𝑀] ∈ 𝐻𝑚(𝑀, 𝜕𝑀;𝑅) gives duality isomorphisms

𝐷 ∶ 𝐻𝑘(𝑀, 𝜕𝑀;𝑅) → 𝐻𝑚−𝑘(𝑀;𝑅) and 𝐷′ ∶ 𝐻𝑘(𝑀) → 𝐻𝑚−𝑘(𝑀, 𝜕𝑀;𝑅)

for every integer 𝑘.

A proof can be found in chapter 21 of [May99].



Chapter 2

Morse theory

2.1 Reeb’s Theorem

The material of this section comes mainly from [Mil69]. The goal is to prove the following result.

Theorem 2.1. (Reeb) Let𝑀 be a compact smooth𝑚-manifold and 𝑓 ∶ 𝑀 → R a smoothmap with only
two critical points, both of which are non-degenerate. Then𝑀 is homeomorphic to the sphere 𝕊𝑚.

We start by giving the definitions of critical points and non-degenerate critical points. Unless stated
otherwise,𝑀will be an𝑚-dimensional smooth manifold and 𝑓 ∶ 𝑀 → Rwill be a smooth map.

Definition 2.2. A point 𝑝 ∈ 𝑀 is called a critical point of 𝑓 if the differential

𝑑𝑝𝑓 ∶ 𝑇𝑝𝑀⟶ 𝑇𝑓(𝑝)R
𝜈( r) ⟼ 𝜈( r ∘ 𝑓)

is zero. This can be stated in terms of local coordinates (𝑥1, … , 𝑥𝑚) in a neighborhood𝑈 of 𝑝 by

𝜕𝑓
𝜕𝑥1

(𝑝) = … =
𝜕𝑓
𝜕𝑥𝑚 (𝑝) = 0.

The real number 𝑓(𝑝) is called a critical value of 𝑓.

Remark 2.3. Write𝑀𝑎 = 𝑓−1(−∞, 𝑎]. If 𝑎 is not a critical value of 𝑓, then𝑀𝑎 is a smooth manifold
with boundary 𝑓−1(𝑎). 1

Definition 2.4. Let 𝑝 ∈ 𝑀 be a critical point. We define a symmetric bilinear map

𝑓∗∗ ∶ 𝑇𝑝𝑀× 𝑇𝑝𝑀→ R

by the following steps:

(i) Take 𝑣, 𝑤 ∈ 𝑇𝑝𝑀.

(ii) Choose extensions to vector fields 𝑣, 𝑤. 2

(iii) Take 𝑓∗∗(𝑣, 𝑤) = 𝑣𝑝(𝑤(𝑓)).

1See Proposition 5.47 in [Lee12]. This fact may be seen as a generalization of the regular value theorem.
2Here vector fields are linear maps𝛸 ∶ 𝒞∞(𝛭) → 𝒞∞(𝛭) that satisfy the Leibniz rule𝛸(𝑓𝑔) = 𝛸(𝑓)𝑔 + 𝑓𝛸(𝑔).

13
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One can check that this is well-defined and that for local coordinates (𝑥1, … , 𝑥𝑚) in a neighborhood 𝑈
of 𝑝, the Grammatrix of 𝑓∗∗ is

(
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑝))

with respect to the basis { 𝜕
𝜕𝑥1 ∣𝑝 , … , 𝜕

𝜕𝑥𝑚 ∣𝑝}.

We say that the point 𝑝 is non-degenerate if 𝑓∗∗ is non-degenerate or, equivalently, if the previous
matrix is invertible.

We define the index of𝑓 at 𝑝 as themaximal dimension of a subspace of𝑇𝑝𝑀 onwhich𝑓∗∗ is negative
definite.

Still before giving a proof of the theorem we state and show a bunch of lemmas.

Lemma 2.5. Let𝑉 ⊆ R𝑚 be a convex neighborhood of 0 and 𝑓 ∈ 𝒞∞(𝑉) with 𝑓(0) = 0. Then

𝑓(𝑥1, … , 𝑥𝑚) =
𝑚
∑
𝑖=1

𝑥𝑖𝑔𝑖(𝑥1, … , 𝑥𝑚)

for some 𝑔𝑖 ∈ 𝒞
∞(𝑉) with 𝑔𝑖(0) =

𝜕𝑓
𝜕𝑥𝑖
(0).

Proof. Since 𝑉 is convex, all points of the form (𝑡𝑥1, … , 𝑡𝑥𝑚) for 𝑡 ∈ [0, 1] lie in 𝑉 (of course as long as
(𝑥1, … , 𝑥𝑚) ∈ 𝑉). Now by the fundamental theorem of calculus and the chain rule, we have

𝑓(𝑥1, … , 𝑥𝑚) =
1

∫
0

𝑑𝑓(𝑡𝑥1, … , 𝑡𝑥𝑚)
𝑑𝑡 𝑑𝑡 =

1

∫
0

𝑚
∑
𝑖=1

𝜕𝑓
𝜕𝑥𝑖

(𝑡𝑥1, … , 𝑡𝑥𝑚)𝑥𝑖𝑑𝑡 =
𝑚
∑
𝑖=1

𝑥𝑖
1

∫
0

𝜕𝑓
𝜕𝑥𝑖

(𝑡𝑥1, … , 𝑡𝑥𝑚)𝑑𝑡.

It suffices then to define 𝑔𝑖(𝑥1, … , 𝑥𝑚) = ∫1
0

𝜕𝑓
𝜕𝑥𝑖
(𝑡𝑥1, … , 𝑡𝑥𝑚)𝑑𝑡.

Lemma 2.6. (Morse) Let 𝑝 ∈ 𝑀 be a non-degenerate critical point of 𝑓. Then there are local coordinates
(𝑦1, … , 𝑦𝑚) in a neighborhood𝑈 of 𝑝 such that 𝑦𝑖(𝑝) = 0 and

𝑓 = 𝑓(𝑝) − (𝑦1)2 − … − (𝑦𝜆)2 + (𝑦𝜆+1)2 + … + (𝑦𝑚)2

throughout𝑈, where 𝜆 is the index of 𝑓 at 𝑝.

Proof. We divide the proof into two steps. We first show that if such an expression exists, then 𝜆 is the
index of 𝑓 at 𝑝. Secondly, we show that for suitable local coordinates (𝑦1, … , 𝑦𝑚) such an expression
holds.

Assume there are local coordinates (𝑧1, … , 𝑧𝑚) in a neighborhood𝑉 of 𝑝 such that

𝑓(𝑞) = 𝑓(𝑝) − (𝑧1(𝑞))2 − … − (𝑧𝜆(𝑞))2 + (𝑧𝜆+1(𝑞))2 + … (𝑧𝑚(𝑞))2.

Then, with respect to the basis { 𝜕
𝜕𝑧1 ∣𝑝 , … , 𝜕

𝜕𝑧𝑚 ∣𝑝}, 𝑓∗∗ has Grammatrix

⎛⎜⎜⎜⎜

⎝

−2
⋱(𝜆)

−2
2

⋱(𝑚−𝜆)

2

⎞⎟⎟⎟⎟

⎠

.
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So there is a subspace of 𝑇𝑝𝑀 of dimension 𝜆 on which 𝑓∗∗ is negative definite (namely, the subspace

⟨ 𝜕
𝜕𝑧1 ∣𝑝 , … , 𝜕

𝜕𝑧𝜆 ∣𝑝⟩). If there were a subspace of dimension greater than 𝜆 on which 𝑓∗∗ were negative def-

inite, then it would intersect ⟨ 𝜕
𝜕𝑧𝜆+1 ∣𝑝 , … , 𝜕

𝜕𝑧𝑚 ∣𝑝⟩. But 𝑓∗∗ is positive definite on this last subspace, so we

reached a contradiction. Thus, 𝜆 is the index of 𝑓 at 𝑝. This proves the first claim.
For the second claim, start with local coordinates 𝜑 = (𝑥1, … , 𝑥𝑚) in a convex neighborhood 𝑉 of

𝑝. Without loss of generality we can assume that 𝜑(𝑝) = 0 (otherwise perform a translation) and that
𝑓(𝑝) = 0. From Lemma 2.5, we have

(𝑓 ∘ 𝜑−1)(𝑥1, … , 𝑥𝑚) =
𝑚
∑
𝑗=1

𝑥𝑗𝑔𝑗(𝑥1, … , 𝑥𝑚)

and

𝑔𝑗(0) =
𝜕(𝑓 ∘ 𝜑−1)

𝜕𝑥𝑗
(0) =

𝜕𝑓
𝜕𝑥𝑗

(𝑝) = 0

since 𝑝 is a critical point. Therefore we can apply again Lemma 2.5 to the functions 𝑔𝑗, which gives

𝑔𝑗(𝑥1, … , 𝑥𝑚) =
𝑚
∑
𝑖=1

𝑥𝑖ℎ𝑖𝑗(𝑥1, … , 𝑥𝑚).

Substituting into the previous expression for (𝑓 ∘ 𝜑−1)we have

(𝑓 ∘ 𝜑−1)(𝑥1, … , 𝑥𝑚) =
𝑚
∑
𝑖,𝑗=1

𝑥𝑖𝑥𝑗ℎ𝑖𝑗(𝑥1, … , 𝑥𝑚).

We can further assume that ℎ𝑖𝑗 = ℎ𝑗𝑖 (just replace ℎ𝑖𝑗 by
1
2(ℎ𝑖𝑗 + ℎ𝑗𝑖) and the same expression for 𝑓 ∘ 𝜑−1

will hold). A (rather long) computation shows that

(ℎ𝑖𝑗(0)) = (12
𝜕2(𝑓 ∘ 𝜑−1)
𝜕𝑥𝑖𝜕𝑥𝑗

(0)) = (12
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑝)) .

Since 𝑝 is non-degenerate, the matrix (ℎ𝑖𝑗(0))1≤𝑖,𝑗≤𝑚 is invertible (hence non-zero). The rest of the proof
just mimics the usual diagonalization proof of symmetric bilinear forms. We proceed by induction. As-
sume there are local coordinates 𝑢 = (𝑢1, … , 𝑢𝑚) in a neighborhood𝑈1 of 𝑝 such that 𝑢(𝑝) = 0 and

(𝑓 ∘ 𝑢−1)(𝑢1, … , 𝑢𝑚) = ±(𝑢1)
2 ± … ± (𝑢𝑟−1)

2 +
𝑚
∑
𝑖,𝑗≥𝑟

𝑢𝑖𝑢𝑗𝐻𝑖𝑗(𝑢1, … , 𝑢𝑚)

for (𝑢1, … , 𝑢𝑚) ∈ 𝑢(𝑈1), where the matrices (𝐻𝑖𝑗(𝑢1, … , 𝑢𝑚)) are symmetric and (𝐻𝑖𝑗(0))𝑟≤𝑖,𝑗≤𝑚 is invert-

ible. Without loss of generality, we can assume that𝐻𝑟𝑟(0) ≠ 0. 3 Choose a (possibly) smaller neighbor-
hood 𝑈2 ⊆ 𝑈1 of 𝑝 so that𝐻𝑟𝑟(𝑢1, … , 𝑢𝑚) ≠ 0 for (𝑢1, … , 𝑢𝑚) ∈ 𝑢(𝑈2). Define new local coordinates
𝑣 = (𝑣1, … , 𝑣𝑚) by the equations

𝑣𝑖 = 𝑢𝑖, for 𝑖 ≠ 𝑟

(𝑣𝑟 ∘ 𝑢−1)(𝑢1, … , 𝑢𝑚) = √|𝐻𝑟𝑟(𝑢1, … , 𝑢𝑚)| [𝑢𝑟 +∑
𝑖>𝑟

𝑢𝑖
𝐻𝑖𝑟(𝑢1, … , 𝑢𝑚)
𝐻𝑟𝑟(𝑢1, … , 𝑢𝑚)

] .

By the inverse function theorem, there is a (possibly) smaller neighborhood𝑈3 ⊆ 𝑈2 of 𝑝 on which
(𝑣 ∘ 𝑢−1) is a diffeomorphism. On this new neighborhood 𝑈3, 𝑣 = (𝑣1, … , 𝑣𝑚) are then indeed local
coordinates. Now easy computations yield

(𝑓 ∘ 𝑣−1)(𝑣1, … , 𝑣𝑚) = ∑
𝑖≤𝑟
(𝑣𝑖)

2 + ∑
𝑖,𝑗>𝑟

𝑣𝑖𝑣𝑗𝐻
′
𝑖𝑗(𝑣1, … , 𝑣𝑚)

3Just do a suitable linear (therefore smooth) change in the last 𝑛−𝑟+1 coordinates (this is possible because (𝛨𝑖𝑗(0))1≤𝑖,𝑗≤𝑟
is invertible).
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for (𝑣1, … , 𝑣𝑚) ∈ 𝑣(𝑈3), where

((𝐻′
𝑖𝑗 ∘ (𝑣 ∘ 𝑢

−1))(𝑢1, … , 𝑢𝑚)) = (𝐻𝑖𝑗(𝑢1, … , 𝑢𝑚) −
𝐻𝑖𝑟(𝑢1, … , 𝑢𝑚)𝐻𝑗𝑟(𝑢1, … , 𝑢𝑚)

𝐻𝑟𝑟(𝑢1, … , 𝑢𝑚)
)

is symmetric and (𝐻′
𝑖𝑗(0))𝑟+1≤𝑖,𝑗≤𝑚 is invertible, which completes the inductive step andfinishes the proof.

Definition 2.7. A 1-parameter group of diffeomorphisms of𝑀 is a smooth map 𝜑 ∶ R ×𝑀 → 𝑀 such
that

(i) for every 𝑡 ∈ R, the map 𝜑𝑡 = 𝜑(𝑡, r) ∶ 𝑀 → 𝑀 is a diffeomorphism.

(ii) for every 𝑡, 𝑠 ∈ R, 𝜑𝑡+𝑠 = 𝜑𝑡 ∘ 𝜑𝑠.

Given such a map 𝜑, define a smooth vector field𝑋 on𝑀 by

𝑋𝑞(𝑓) = lim
ℎ→0

𝑓(𝜑ℎ(𝑞)) − 𝑓(𝑞)
ℎ =

𝑑𝑓(𝜑𝑡(𝑞))
𝑑𝑡 ∣

𝑡=0
=
𝑑𝜑𝑡(𝑞)
𝑑𝑡 ∣

𝑡=0
(𝑓)

for every 𝑞 ∈ 𝑀 and 𝑓 ∈ 𝒞∞(𝑀). The vector field𝑋 is said to generate the group 𝜑.

Lemma 2.8. A smooth vector field 𝑋 on𝑀 which vanishes outside of a compact set 𝐾 ⊆ 𝑀 generates a
unique 1-parameter group of diffeomorphisms of𝑀.

Proof. Let 𝜑 be a 1-parameter group of diffeomorphisms with generator𝑋. Notice that

𝑋𝜑𝑠(𝑞)(𝑓) =
𝑑𝜑𝑡(𝜑𝑠(𝑞))

𝑑𝑡 ∣
𝑡=0

(𝑓) =
𝑑𝜑𝑡+𝑠(𝑞)

𝑑𝑡 ∣
𝑡=0

(𝑓) =
𝑑𝜑𝑡(𝑞)
𝑑𝑡 ∣

𝑡=𝑠
(𝑓).

Therefore, 𝜑 satisfies the ODEs

𝑑𝜑𝑡(𝑞)
𝑑𝑡 = 𝑋𝜑𝑡(𝑞) with initial condition 𝜑0(𝑞) = 𝑞. (∗)

It is a standard result in Differential Geometry that these ODEs have a locally unique maximal solution
that is smooth on 𝑡 and on the initial condition 𝑞 ∈ 𝑀. 4 More precisely, for each point 𝑝 ∈ 𝑀 there
is a neighborhood𝑈𝑝 of 𝑝 and a real number 𝜀𝑝 > 0 so that (∗) has a unique smooth solution 𝜑𝑡(𝑞) for
𝑞 ∈ 𝑈𝑝 and |𝑡| < 𝜀𝑝. This proves the uniqueness part of the lemma.

For the existence part it suffices to show that there exists a 1-parameter group of diffeomorphisms
𝜑 ∶ R ×𝑀 → 𝑀 satisfying (∗). Cover𝐾 with a finite number of neighborhoods𝑈𝑝1 , … , 𝑈𝑝𝑛 defined as
above. Let 𝜀0 = min{𝜀𝑝1 , … , 𝜀𝑝𝑛} and set𝜑𝑡(𝑞) = 𝑞 for𝑞 ∉ 𝐾, 𝑡 ∈ R. Then (∗)has a smooth solution𝜑𝑡(𝑞)
for 𝑞 ∈ 𝑀 and |𝑡| < 𝜀0. Because of local uniqueness, we also have 𝜑𝑡+𝑠 = 𝜑𝑡 ∘ 𝜑𝑠 when |𝑡|, |𝑠|, |𝑡 + 𝑠| < 𝜀0.
In particular, each 𝜑𝑡 is a diffeomorphism.

Nowwe just need to define 𝜑𝑡 for |𝑡| ≥ 𝜀0. Write 𝑡 as 𝑘(𝜀0/2) + 𝑟with 𝑘 ∈ Z and |𝑟| < 𝜀0/2. If 𝑘 ≥ 0,
set

𝜑𝑡 = (𝜑𝜀0/2)
𝑘 ∘ 𝜑𝑟.

If 𝑘 < 0, set
𝜑𝑡 = (𝜑−𝜀0/2)

−𝑘 ∘ 𝜑𝑟.

This is well-defined, smooth, satisfies (∗) and 𝜑𝑡+𝑠 = 𝜑𝑡 ∘ 𝜑𝑠 for all 𝑡, 𝑠 ∈ R.
4One can see, for example, Theorem 9.12 in [Lee12].
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Theorem 2.9. Let 𝑎 < 𝑏 be real numbers such that 𝑓−1[𝑎, 𝑏] ⊆ 𝑀 is compact and contains no critical

points of 𝑓. Then𝑀𝑎 is diffeomorphic to𝑀𝑏 and𝑀𝑎 is a deformation retract of𝑀𝑏.

Proof. Choose aRiemannianmetric 𝑔( r, r) = ⟨ r, r⟩ on𝑀. 5 Consider the vector field grad 𝑓 determined
by

⟨𝑣, (grad 𝑓)𝑝⟩ = 𝑣(𝑓)

for every 𝑝 ∈ 𝑀 and 𝑣 ∈ 𝑇𝑝𝑀. Notice that (grad 𝑓)𝑝 = 0 if and only if 𝑝 is a critical point of 𝑓.
Choose a smooth function 𝜌 ∶ 𝑀 → R which equals 1/⟨grad 𝑓, grad 𝑓⟩ throughout the compact

set 𝑓−1[𝑎, 𝑏] and vanishes outside of a compact neighborhood of 𝑓−1[𝑎, 𝑏]. Then the vector field

𝑋𝑞 = 𝜌(𝑞)(grad 𝑓)𝑞

satisfies the conditions of Lemma 2.8, therefore generates a 1-parameter group of diffeomorphisms 𝜑𝑡 ∶
𝑀 → 𝑀. For every 𝑞 ∈ 𝑀 consider the functionΦ𝑞 ∶ R → R given byΦ𝑞(𝑡) = 𝑓(𝜑𝑡(𝑞)). Notice that,

if 𝜑𝑡(𝑞) ∈ 𝑓
−1[𝑎, 𝑏], then

𝑑Φ𝑞(𝑡)
𝑑𝑡 =

𝑑𝑓(𝜑𝑡(𝑞))
𝑑𝑡 = ⟨

𝑑𝜑𝑡(𝑞)
𝑑𝑡 , (grad 𝑓)𝜑𝑡(𝑞)⟩ = ⟨𝑋𝜑𝑡(𝑞), (grad 𝑓)𝜑𝑡(𝑞)⟩ = 1.

Thus the map Φ𝑞(𝑡) has derivative +1 when Φ𝑞(𝑡) ∈ [𝑎, 𝑏]. Now consider the diffeomorphism 𝜑𝑏−𝑎 ∶
𝑀 → 𝑀. We claim that it restricts to a diffeomorphism𝑀𝑎 →𝑀𝑏. Indeed:

• If 𝑞 ∈ 𝑀𝑎, thenΦ𝑞(0) = 𝑓(𝜑0(𝑞)) = 𝑓(𝑞) ∈ (−∞, 𝑎]. Now, if we increase 𝑡 from 0 to 𝑏 − 𝑎, then
Φ𝑞(𝑡) varies continuously and ifΦ𝑞(𝑡0) reaches 𝑎 at some point 𝑡0, thenΦ𝑞(𝑡) carries on increasing
with constant slope +1, so it can never exceed 𝑏. Hence,𝑓(𝜑𝑏−𝑎(𝑞)) = Φ𝑞(𝑏−𝑎) ≤ 𝑏 and𝜑𝑏−𝑎(𝑞) ∈
𝑀𝑏.

• If 𝑞 ∈ 𝑀𝑏 a similar argument shows that 𝑝 = 𝜑𝑎−𝑏(𝑞) ∈ 𝑀
𝑎, so 𝜑𝑏−𝑎(𝑝) = 𝑞.

This finishes the first part of the proof.

For the second part, define a homotopy 𝑟 ∶ [0, 1] ×𝑀𝑏 →𝑀𝑏 by

𝑟𝑡(𝑞) = 𝑟(𝑡, 𝑞) = {
𝑞, 𝑓(𝑞) ≤ 𝑎.
𝜑𝑡(𝑎−𝑓(𝑞))(𝑞), 𝑎 ≤ 𝑓(𝑞) ≤ 𝑏.

By an argument with slopes similar to the one we already used, one can see that 𝑟 is well-defined (i.e. has
image in𝑀𝑏) and that 𝑟1 takes𝑀

𝑏 to𝑀𝑎. Since 𝑟 is continuous on the closed sets [0, 1] × 𝑓−1(−∞, 𝑎],
[0, 1] × 𝑓−1[𝑎, 𝑏] separately (and is well-defined on the intersection), it is continuous on [0, 1] × 𝑀𝑏.

Because of this and the facts that 𝑟0 = id𝛭𝑏 , 𝑟1 ∶ 𝑀
𝑏 → 𝑀𝑎 and 𝑟1|𝛭𝑎 = id𝛭𝑎 , we have just proven that

𝑀𝑎 is a deformation retraction of𝑀𝑏.

Now we are ready to give a proof of Reeb’s Theorem.

Proof. (of Theorem 2.1) Since𝑀 is compact, 𝑓(𝑀) has a minimum 𝑎 ∈ R and a maximum 𝑏 ∈ R.
Take 𝑝 ∈ 𝑀 with 𝑓(𝑝) = 𝑎 and a chart (𝑈, 𝜑) about 𝑝. Then (𝑓 ∘ 𝜑−1) ∶ 𝜑(𝑈) ⊆ R𝑚 → R reaches
its minimum at 𝜑(𝑝), so by standard results of differentiable analysis, 𝜑(𝑝) must be a critical point of
(𝑓 ∘ 𝜑−1), i.e. 𝑝must be a critical point of 𝑓. Similarly for a point 𝑞 ∈ 𝑀with 𝑓(𝑞) = 𝑏. Therefore, the
two critical points of 𝑓 are 𝑝 and 𝑞.
By Lemma 2.6 we can write

𝑓 = 𝑎 + (𝑦1)2 + … + (𝑦𝑚)2 in a neighborhood𝑈𝑝 of 𝑝

5This can always be done. See, for example, Proposition 13.3 in [Lee12].
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with no minus signs because 𝑎 is the minimum of 𝑓. Similarly,

𝑓 = 𝑏 − (𝑦1)2 − … − (𝑦𝑚)2 in a neighborhood𝑈𝑞 of 𝑞

Choose 𝜀 > 0 small enough so that𝑀𝑎+𝜀 = 𝑓−1[𝑎, 𝑎 + 𝜀] lies in𝑈𝑝 and 𝑓
−1[𝑏 − 𝜀, 𝑏] lies in𝑈𝑞. By the

previous expressions for 𝑓,𝑀𝑎+𝜀 and 𝑓−1[𝑏 − 𝜀, 𝑏] are homeomorphic to closed 𝑚-cells. Furthermore,

by Theorem 2.9,𝑀𝑎+𝜀 is homeomorphic to𝑀𝑏−𝜀. Thus𝑀 is the union of two closed𝑚-cells𝑀𝑏−𝜀 =
𝑓−1[𝑎, 𝑏 − 𝜀] and 𝑓−1[𝑏 − 𝜀, 𝑏] glued along their common boundary. This is a well-known description of
the sphere 𝕊𝑚 as a CW-complex. In particular,𝑀 is homeomorphic to 𝕊𝑚.

2.2 Construction of𝑀7
𝑘

In this section we give a construction of 7-manifolds𝑀7
𝑘 for 𝑘 ∈ Z odd and show that they are all

homeomorphic to the sphere 𝕊7 just as Milnor did in [Mil56]. Later on we will see that some of these
manifolds are in fact exotic spheres.

In order to define such manifolds, we need the following lemma.

Lemma 2.10. Let𝑀1,𝑀2 be smooth𝑚-dimensionalmanifolds,𝑈𝑖 ⊆ 𝑀𝑖 be open subsets and 𝑔 ∶ 𝑈1 → 𝑈2
be a diffeomorphism satisfying that every point 𝑥 ∈ 𝜕𝑈1

6 has a neighborhood𝑉1 ⊆ 𝑀1 such that the closure

of 𝑔(𝑉1 ∩ 𝑈1) in𝑀2 is contained in𝑈2. Then, the quotient𝑀 = 𝛭1⊔𝛭2
𝑢∼𝑔(𝑢) has a natural smooth structure of

dimension𝑚.

Proof. Denote𝑀 = 𝑀1 ⊔ 𝑀2. We start by claiming that the quotient map 𝜋 ∶ 𝑀 → 𝑀 is open and
that the restrictions 𝜋|𝛭1

, 𝜋|𝛭2
are homeomorphisms onto their respective images. Indeed, for an open

subset𝑉1 ⊆ 𝑀1, we have 𝜋
−1(𝜋(𝑉1)) = 𝑉1 ∪ 𝑔(𝑉1 ∩𝑈1)which is open in𝑀. Similarly for an open subset

𝑉2 ⊆ 𝑀2. Since 𝜋|𝛭1
and 𝜋|𝛭2

are injective, the second claim also follows. As a consequence,𝑀 is locally
Euclidean and second countable.

Now we check that the space 𝑀 is Hausdorff. Let 𝑝, 𝑞 ∈ 𝑀, 𝑝 ≠ 𝑞. Choose representatives
𝑥, 𝑦 ∈ 𝑀 of 𝑝, 𝑞, respectively. If 𝑥 and 𝑦 belong to the same 𝑀𝑖, the result is clear because 𝜋|𝛭𝑖

are
homeomorphisms. Without loss of generality, assume that 𝑥 ∈ 𝑀1 and 𝑦 ∈ 𝑀2 and distinguish cases
𝑥 ∈ 𝑈1,𝑀1 ∖ 𝑈1, 𝜕𝑈1, 𝑦 ∈ 𝑈2,𝑀1 ∖ 𝑈2, 𝜕𝑈2. Most of these are easily solved, so here we only deal with
the problematic case 𝑥 ∈ 𝜕𝑈1, 𝑦 ∈ 𝜕𝑈2. Take 𝑉1 ⊆ 𝑀1 given by the hypothesis of the lemma. Then,

𝑉2 = 𝑀2 ∖ 𝑔(𝑉1 ∩ 𝑈1) is a neighborhood of 𝑦 and 𝜋(𝑉1) ∩ 𝜋(𝑉2) = ∅, as wanted.
Finally, consider the charts on𝑀 of the form (𝜋(𝑉), 𝜑 ∘ 𝜋−1|𝑉 ), where (𝑉, 𝜑) is a chart on𝑀1 or on

𝑀2. These clearly cover𝑀, so for them to form an atlas we just need to check compatibility. Let (𝑉, 𝜑)
and (𝑊,𝜓) be charts on𝑀1 or on𝑀2. If both are charts on the same𝑀𝑖, then

(𝜑 ∘ 𝜋−1|𝑉 ) ∘ (𝜓 ∘ 𝜋−1|𝑊)−1 = 𝜑 ∘ 𝜓−1

is smooth. If (𝑉, 𝜑) is on𝑀1 and (𝑊,𝜓) is on𝑀2 (the other way around is done similarly), then

(𝜑 ∘ 𝜋−1|𝑉 ) ∘ (𝜓 ∘ 𝜋−1|𝑊)−1 = 𝜑 ∘ 𝜋−1|𝑉 ∘ 𝜋|𝑊 ∘ 𝜓−1 = 𝜑 ∘ 𝜋−1|𝑉 ∘ 𝜋|𝑔−1(𝑊) ∘ 𝑔
−1 ∘ 𝜓−1 = 𝜑 ∘ 𝑔−1 ∘ 𝜓−1

is also smooth.

We now identify the spaceR4 with the ring of quatertionsH via

(𝑎, 𝑏, 𝑐, 𝑑) ↦ 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘

6The notation 𝜕𝑈 here is to be interpreted as the space 𝑈 ∖ 𝑈̊. It is thus not to be confused with the boundary of a
manifold.
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where 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1. We also identify the sphere 𝕊3 with the unit quaternions

{𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 ∈ H ∶ ∥𝑞∥2 = 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 = 1}.

For a quaternion 𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘we denote its conjugate by 𝑞 = 𝑎 − 𝑏𝑖 − 𝑐𝑗 − 𝑑𝑘.

Lemma 2.11. Let 𝑘 be an odd integer. Let ℎ, 𝑗 be the integers uniquely determined by ℎ + 𝑗 = 1, ℎ − 𝑗 = 𝑘.
Then, the map

𝑔 ∶ (R4 ∖ {0}) × 𝕊3 ⟶(R4 ∖ {0}) × 𝕊3

(𝑢, 𝑣) ⟼ (𝑢′, 𝑣′) = ( 𝑢
‖𝑢‖2

, 𝑢
ℎ𝑣𝑢𝑗

‖𝑢‖ℎ+𝑗
)

is a diffeomorphism. Furthermore, the 7-manifold𝑀1 = 𝑀2 = R4 × 𝕊3 with𝑈1 = 𝑈2 = (R4 ∖ {0}) × 𝕊3

and the diffeomorphism 𝑔 satisfy the conditions of Lemma2.10. The resulting quotientmanifold is denoted
by𝑀7

𝑘 .

Proof. Injectivity and surjectivity of 𝑔 can be easily checked. Smoothness is simply checked by noting
that 𝑔 can be extended to a map (R4 ∖ {0}) ×R4 ⟶(R4 ∖ {0}) ×R4 that is clearly smooth. Since 𝑔−1

has a similar expression, namely

𝑔−1(𝑢′, 𝑣′) = ( 𝑢′

‖𝑢′‖2
, (𝑢

′)ℎ𝑣′(𝑢′)𝑗

‖𝑢′‖ ) ,

the same argument applies. Finally, if 𝑥 ∈ 𝜕𝑈1, then 𝑥 = (0, 𝑣) and we can just choose 𝑉1 = 𝐵1(0) × 𝕊
3,

which gives 𝑔(𝑉1 ∩ 𝑈1) ⊆ (R4 ∖ 𝐵1(0)) × 𝕊
3 ⊆ 𝑈1.

Lemma 2.12. Define new coordinates (𝑢″, 𝑣′) = (𝑢′(𝑣′)−1, 𝑣′). The map 𝑓 ∶ 𝑀7
𝑘 → R given by

𝑓(𝑥) = {

ℜ(𝑣)
√1 + ‖𝑢‖2

if 𝑥 = (𝑢, 𝑣),

ℜ(𝑢″)
√1 + ‖𝑢″‖2

if 𝑥 = (𝑢′, 𝑣′).

is well-defined, smooth and has only two critical points, both of which are non-degenerate.

Proof. We start by showing that 𝑓(𝑢, 𝑣) = 𝑓(𝑢′, 𝑣′) for (𝑢′, 𝑣′) = 𝑔(𝑢, 𝑣). We have 𝑢″ = 𝑢′(𝑣′)−1 =
𝑢

‖𝑢‖2
‖𝑢‖ 𝑢−𝑗𝑣−1𝑢−ℎ = 𝑢ℎ𝑣𝑢−ℎ

‖𝑢‖ , so ∥𝑢″∥ = 1
‖𝑢‖ . Hence

ℜ(𝑢″)
√1 + ‖𝑢″‖2

=
ℜ (𝑢

ℎ𝑣𝑢−ℎ
‖𝑢‖ )

√1 + ‖𝑢‖−2
= ℜ(𝑢ℎ𝑣𝑢−ℎ)
√1 + ‖𝑢‖2

= ℜ(𝑣)
√1 + ‖𝑢‖2

.

The last equality follows from

ℜ(𝑢ℎ𝑣𝑢−ℎ) = 1
2 (𝑢

ℎ𝑣𝑢−ℎ + 𝑢−ℎ𝑣𝑢ℎ) = 1
2 (𝑢

ℎ𝑣𝑢−ℎ + ‖𝑢‖−2ℎ

𝑢−ℎ
𝑣‖𝑢‖

2ℎ

𝑢ℎ
)

= 𝑢ℎℜ(𝑣)𝑢−ℎ = ℜ(𝑣).

This proves that 𝑓 is well-defined.
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Denote the charts of𝑀𝑖 by (𝑈
𝑖
±𝜑

𝑖
±). Notice that the four charts of𝑀7

𝑘 of the form (𝜋(𝑈𝑖
±), 𝜑

𝑖
± ∘𝜋

−1
|𝑈𝑖±
)

already cover𝑀7
𝑘 . For (𝑤, 𝑠) ∈ R

4 ×R3, we have

(𝑓 ∘ 𝜋|𝑈1± ∘ (𝜑
1
±)

−1)(𝑤, 𝑠) = 𝑓 (𝑤, ±1 − 𝜎(𝑠)1 + 𝜎(𝑠) , …) = ± 1 − 𝜎(𝑠)

(1 + 𝜎(𝑠))√1 + ‖𝑤‖2
.

Writing Γ(𝑠) = 1−𝜎(𝑠)
1+𝜎(𝑠) , 𝜒(𝑤) =

1
√1+‖𝑤‖2

, the Jacobian matrix of this map is

∓𝜒(𝑤) ( Γ(𝑠)𝑤1
1+‖𝑤‖2

Γ(𝑠)𝑤2
1+‖𝑤‖2

Γ(𝑠)𝑤3
1+‖𝑤‖2

Γ(𝑠)𝑤4
1+‖𝑤‖2

4
(1+𝜎(𝑠))2 𝑠1

4
(1+𝜎(𝑠))2 𝑠2

4
(1+𝜎(𝑠))2 𝑠3) .

Notice that thismatrix is zero onlywhen (𝑤, 𝑠) = (0, 0). Hence, the only critical points of𝑓on𝜋(𝑀1) are
(𝑢, 𝑣) = (0, ±1). One can easily compute the Hessian matrix and evaluate it at (𝑤, 𝑠) = (0, 0) to obtain a
diagonal matrix in which every diagonal element is non-zero. This proves that the points (𝑢, 𝑣) = (0, ±1)
are non-degenerate critical points. We still need to check that there are no critical points on 𝜋(𝑀2). For
(𝑤, 𝑠) ∈ R4 ×R3, we have

(𝑓 ∘ 𝜋|𝑈2± ∘ (𝜑
2
±)

−1)(𝑤, 𝑠) = 𝜒(𝑤)ℜ(𝑤𝑣′),

where

𝑣′ = (±Γ(𝑠),
2𝑠1

1 + 𝜎(𝑠) ,
2𝑠2

1 + 𝜎(𝑠) ,
2𝑠3

1 + 𝜎(𝑠))

and hence

ℜ(𝑤𝑣′) = ±𝑤1Γ(𝑠) + 𝑤2
2𝑠1

1 + 𝜎(𝑠) + 𝑤3
2𝑠2

1 + 𝜎(𝑠) + 𝑤4
2𝑠3

1 + 𝜎(𝑠) ,

(𝑓 ∘ 𝜋|𝑈2± ∘ (𝜑
2
±)

−1)(𝑤, 𝑠) =
𝜒(𝑤)

1 + 𝜎(𝑠) [±𝑤1(1 − 𝜎(𝑠)) + 2𝑤2𝑠1 + 2𝑤3𝑠2 + 2𝑤4𝑠3] .

Since points of the from (𝑢′, 𝑣′) with 𝑢′ ≠ 0 are identified with points (𝑢, 𝑣) with 𝑢 ≠ 0, it suffices to
compute the Jacobian matrix and evaluate it at 𝑤 = 𝑢′ = 0. Doing so, we obtain

(±Γ(𝑠) 2𝑠1
1+𝜎(𝑠)

2𝑠2
1+𝜎(𝑠)

2𝑠3
1+𝜎(𝑠) …)

and we already see that the first four terms cannot simultaneously vanish.

As𝑀7
𝑘 is clearly compact, these lemmas and Reeb’s theorem 2.1 imply what we wanted.

Corollary 2.13. The manifolds𝑀7
𝑘 are homeomorphic to 𝕊7.



Chapter 3

Characteristic classes

We switch now to a completely different topic. In this chapter, the concept of vector bundle is intro-
duced in Section 3.1. The ultimate goal is to define several characteristic classes, which is done later in
Sections 3.2-3.4. Finally, we state and sketch a proof of theHirzebruch signature theorem in Section 3.5.

The main reference for the whole chapter is [MS74].

3.1 Vector bundles

Definition 3.1. Let 𝐵 be a topological space. A (real) vector bundle 𝜉 over 𝐵 consists of

(i) the given space 𝐵, which will be referred to as the base space,

(ii) a topological space 𝐸 = 𝐸(𝜉) called the total space,

(iii) a continuous map 𝜋 ∶ 𝐸 → 𝐵 called the projection map and

(iv) a real vector space structure on the sets 𝜋−1(𝑏) for every 𝑏 ∈ 𝐵.

Furthermore, the condition of local triviality must be satisfied. Namely, every 𝑏 ∈ 𝐵 has a neighborhood
𝑈 ⊆ 𝐵, an integer 𝑛 ≥ 0 and a homeomorphism

ℎ ∶ 𝑈 ×R𝑛 → 𝜋−1(𝑈)

so that for every 𝑏 ∈ 𝑈, the map

ℎ𝑏 = ℎ(𝑏, r) ∶ R𝑛 → 𝜋−1(𝑏)

𝑥 ↦ ℎ(𝑏, 𝑥)

is an isomorphism of R-vector spaces. Such a pair (𝑈, ℎ) is called local coordinate system for 𝜉 about 𝑏.
The vector space 𝜋−1(𝑏) is also denoted by 𝐹𝑏(𝜉) (or simply 𝐹𝑏) and is called fiber over 𝑏. If 𝑈 can be
chosen to be the entire base space 𝐵, then 𝜉will be called a trivial bundle.

Remark 3.2. Because of the local triviality property, 𝑛 is a locally constant function of 𝑏. In our setting,
𝐵 will always be connected. Hence 𝑛 will always be a global constant and its value will be specified by
saying that 𝜉 is anR𝑛-bundle over 𝐵.

Remark 3.3. A smooth (real) vector bundle is a (real) vector bundle for which 𝐵 and 𝐸 are smooth man-
ifolds, 𝜋 is a smooth map and the local coordinate systems (𝑈, ℎ) can be chosen so that ℎ is a diffeomor-
phism.

Definition 3.4. Let𝜉 and𝜂beR𝑛-bundles. Abundlemap𝜉 → 𝜂 is a continuous function𝑓 ∶ 𝐸(𝜉) → 𝐸(𝜂)
that maps each fiber 𝐹𝑏(𝜉) isomorphically onto one of the fibers 𝐹𝑏′(𝜂) asR-vector spaces. We set 𝑓(𝑏) =
𝑏′. The map 𝑓 ∶ 𝐵(𝜉) → 𝐵(𝜂) is easily seen to be continuous. We also say that 𝑓 is covered by 𝑓.

21



22 Characteristic classes

Definition 3.5. Two vector bundles 𝜉 and 𝜂 over the same base space 𝐵 are isomorphic (written 𝜉 ≅ 𝜂)
if there is a bundle map 𝜉 → 𝜂 that is a homeomorphism 𝐸(𝜉) → 𝐸(𝜂) and covers the identity 𝐵 → 𝐵.
Notice that 𝜉 is trivial if, and only if, it is isomorphic to 𝐸 = R𝑛 × 𝐵with projection 𝜋(𝑥, 𝑏) = 𝑏.

Contructing vector bundles

We now turn our attention to briefly describe how to construct new vector bundles out of old ones.

Definition 3.6. Let 𝜉 be a vector bundle over 𝐵 with projection 𝜋 ∶ 𝐸 → 𝐵 and let 𝐵1 ⊆ 𝐵. Then,
the restriction 𝜋|𝛦1 ∶ 𝐸1 → 𝐵1 of 𝜋 to 𝐸1 = 𝜋−1(𝐵1) gives rise to a new vector bundle over 𝐵1 called the
restriction of 𝜉 to 𝐵1 and is denoted by 𝜉|𝛣1 . The vector space structure on each fiber 𝐹𝑏(𝜉|𝛣1) is the same
as the given structure on 𝐹𝑏(𝜉).

Definition 3.7. Let 𝜉 be a vector bundle over 𝐵 with projection 𝜋 ∶ 𝐸 → 𝐵. Let further 𝐵1 be an
arbitrary topological space and 𝑓 ∶ 𝐵1 → 𝐵 a continuous map. The induced bundle 𝑓∗𝜉 over 𝐵1 is
constructed as follows. Take its total space to be 𝐸1 = {(𝑏, 𝑒) ∈ 𝐵1 × 𝐸 ∶ 𝑓(𝑏) = 𝜋(𝑒)} and projection
𝜋1 ∶ 𝐸1 → 𝐵1 defined by (𝑏, 𝑒) ↦ 𝑏. The vector space structure on each fiber is the obvious one.

Definition 3.8. Let 𝜉1, 𝜉2 be two vector bundles with projections 𝜋𝑖 ∶ 𝐸𝑖 → 𝐵𝑖. The Cartesian product
bundle 𝜉1 × 𝜉2 is the bundle with projection 𝜋 = 𝜋1 × 𝜋2 ∶ 𝐸1 × 𝐸2 → 𝐵1 × 𝐵2 and obvious vector space
structure on each fiber.

Definition 3.9. Let𝜉1, 𝜉2 be twovector bundles. TheWhitney sumbundle 𝜉1⊕𝜉2 is defined as𝑑
∗(𝜉1×𝜉2),

where 𝑑 ∶ 𝐵 → 𝐵 × 𝐵 is the diagonal embedding.

Remark 3.10. The motivation behind this notation comes from the fact that the fibers 𝐹𝑏(𝜉1 ⊕ 𝜉2) are
canonically isomorphic to the direct sum 𝐹𝑏(𝜉1) ⊕ 𝐹𝑏(𝜉2).

For the next construction, we need first to define what a Euclidean metric on a vector bundle is.

Definition 3.11. A Euclidean vector bundle is a vector bundle 𝜉 equipped with a continuous function
𝜇 ∶ 𝐸(𝜉) → R that is positive definite and quadratic on each fiber. Using a partition of unity, it can be
shown that such a function always exists if the base space is paracompact.

Definition 3.12. Let 𝜂 be a Euclidean vector bundle over 𝐵 and let 𝜉 ⊂ 𝜂 be a sub-bundle, i.e. a vector
bundle over 𝐵 whose fibers are vector subspaces of the fibers of 𝜂. The orthogonal complement of 𝜉 in 𝜂
is the sub-bundle 𝜉⟂ of 𝜂whose fibers are the orthogonal complements 𝐹𝑏(𝜉)

⟂ of 𝐹𝑏(𝜉) in 𝐹𝑏(𝜂).

Remark 3.13. Since the map continuous map 𝑓 ∶ 𝐸(𝜉 ⊕ 𝜉⟂) → 𝐸(𝜂), (𝑏, 𝑒1, 𝑒2) ↦ 𝑒1 + 𝑒2 defines an
isomorphism on each fiber = 𝐹𝑏(𝜂) = 𝐹𝑏(𝜉) ⊕𝐹𝑏(𝜉

⟂), it follows that 𝜂 ≅ 𝜉⊕ 𝜉⟂. In words, any Euclidean
vector bundle can be decomposed into aWhitney sum of orthogonal sub-bundles.

Many of these constructions can be generalized as follows. Denote the category of finite dimensional
vector spaces and isomorphisims by 𝒰. Let 𝑇 ∶ 𝒰 × 𝒰 → 𝒰 be a functor. Notice that any finite
dimensional vector space can be naturally topologized. In particular, for any finite dimensional vector
spaces 𝐸, 𝐹, the set Iso(𝐸, 𝐹), being a subset of Hom(𝐸, 𝐹), has a natural topology. We further assume
that𝑇(𝑓, 𝑔) varies continuously on 𝑓 and 𝑔 in this sense. Given vector bundles 𝜉1, 𝜉2 over𝐵, we can then
naturally construct a new vector bundle 𝜉 = 𝑇(𝜉1, 𝜉2)whose fibers are 𝐹𝑏(𝜉) = 𝑇(𝐹𝑏(𝜉1), 𝐹𝑏(𝜉2)). Details
on these assertions can be found in [MS74] pp. 31-34.
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Orientation of vector bundles

Now, let 𝑉 be an 𝑛-dimensional real vector space. As already said, 𝑉 has a natural topology, which al-
lows us to define an 𝑅-orientation of 𝑉 as a choice of a generator of 𝐻𝑛(𝑉|0; 𝑅). Even more, because
of the universal coefficient theorem for cohomology 1.39, the map ℎ loc. cit. defines an isomorphism
𝐻𝑛(𝑉|0; 𝑅) ≅ Hom𝑅(𝐻𝑛(𝑉|0; 𝑅), 𝑅). Since𝐻𝑛(𝑉|0; 𝑅) ≅ 𝑅 is free, for every generator𝜇of𝐻𝑛(𝑉|0; 𝑅)
there is a unique cohomology class 𝑢 ∈ 𝐻𝑛(𝑉|0; 𝑅) such that ℎ(𝑢)(𝜇) = ⟨𝑢, 𝜇⟩ = 1. One can thus also
define an 𝑅-orientation of 𝑉 as a choice of a generator of𝐻𝑛(𝑉|0; 𝑅). This last definition is the one we
are going to use in the following sections unless otherwise specified.

Given a subset𝐸′ ⊆ 𝐸 of the total space of a bundle, we will denote the set of nonzero elements in𝐸′

by 𝐸′
0. In other words, 𝐸

′
0 = 𝐸′ ∖ {𝑝 ∈ 𝐸′ ∶ 𝑝 = 0 in some fiber 𝐹}.

Definition 3.14. An𝑅-orientation for a vector bundle 𝜉over𝐵 is a function that assigns an𝑅-orientation
to each fiber, i.e. a choice of a generator 𝑢𝐹 ∈ 𝐻

𝑛(𝐹, 𝐹0; 𝑅) for every fiber𝐹. This function is also required
to satisfy the following local compatibility condition: for every 𝑏 ∈ 𝐵 there is a neighborhood𝑁 of 𝑏 and
a cohomology class

𝑢 ∈ 𝐻𝑛(𝜋−1(𝑁), 𝜋−1(𝑁)0; 𝑅)

so that, for each fiber 𝐹 over𝑁, the image of 𝑢 by the restriction homomorphism

𝐻𝑛(𝜋−1(𝑁), 𝜋−1(𝑁)0; 𝑅) → 𝐻𝑛(𝐹, 𝐹0; 𝑅)
𝑤 ↦ 𝑤|(𝐹,𝐹0)

induced by the inclusion (𝐹, 𝐹0) ↪ (𝜋−1(𝑁), 𝜋−1(𝑁)0) equals the chosen generator 𝑢𝐹. We say that 𝜉 is
an 𝑅-oriented vector bundle if an 𝑅-orientation has been fixed. As usual, 𝑅 = Z is to be assumed if no
explicit mention of 𝑅 is made.

Remark 3.15. If 𝜉 is an 𝑅-oriented vector bundle and 𝐵1 ⊆ 𝐵 is a subset of its base space, then the
𝑅-orientation of 𝜉 induces an 𝑅-orientation on the restriction bundle 𝜉|𝛣1 .

Remark 3.16. If a vector bundle is oriented, then it is𝑅-oriented for every commutative ring with unit
𝑅. This can be argued using the following general fact: if 𝐴• is a chain complex of free Z-modules, then
there are well-defined maps

𝐻𝑛(𝐴;Z) → 𝐻𝑛(𝐴; 𝑅)

that take a cohomology class [𝜑] ∈ 𝐻𝑛(𝐴;Z) represented by a cocycle 𝜑 ∶ 𝐴𝑛 → Z to the cohomology
class [𝜑𝑅] ∈ 𝐻

𝑛(𝐴; 𝑅) represented by the cocycle

𝜑𝑅 ∶ 𝐴𝑛 ⊗ 𝑅 → 𝑅
𝑎 ⊗ 𝑟 ↦ 𝑟 ⋅ 𝜙(𝜑(𝑎))

where 𝜙 is the unique ring homomorphism Z → 𝑅.
Using this fact, one can check that the cohomology classes 𝑢𝐹 ∈ 𝐻𝑛(𝐹, 𝐹0;Z) are sent to generators

of𝐻𝑛(𝐹, 𝐹0; 𝑅), also denoted 𝑢𝐹, and that the local compatibility condition is still satisfied.

3.2 The Euler class

The aim of this section is to give a proof of the following theorem and to discuss some of its conse-
quences.

Theorem 3.17. Let 𝜉 be an oriented R𝑛-bundle over 𝐵 with total space 𝐸 and let 𝑅 be an commutative
ring with unit. Then, 𝜉 is canonically 𝑅-oriented (cf. Remark 3.16) and
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(i) 𝐻𝑖(𝐸, 𝐸0; 𝑅) = 0 for 𝑖 < 𝑛,

(ii) there is a unique cohomology class 𝑢 ∈ 𝐻𝑛(𝐸, 𝐸0; 𝑅) whose restriction 𝑢|(𝐹,𝐹0) equals the 𝑅-orientation
choice 𝑢𝐹 ∈ 𝐻

𝑛(𝐹, 𝐹0; 𝑅) for every fiber 𝐹, and

(iii) for every integer 𝑘, the map

𝐻𝑘(𝐸; 𝑅) → 𝐻𝑛+𝑘(𝐸, 𝐸0; 𝑅)
𝑦 ↦ 𝑢 ` 𝑦

is an isomorphism.

Let us first talk about the consequences of this theorem. A quick one is the following.

Corollary 3.18. (Thom isomorphism) For every integer 𝑘, the map

𝜙 ∶ 𝐻𝑘(𝐵; 𝑅) → 𝐻𝑛+𝑘(𝐸, 𝐸0; 𝑅)
𝑥 ↦ 𝑢 ` 𝐻𝑘(𝜋)(𝑥)

is an isomorphism that will be called the Thom isomorphism.

Proof. Notice that 𝜋 is a homotopy equivalence between 𝐸 and 𝐵 with inverse the zero section, so 𝜙 is
just the composition of the isomorphism in cohomology induced by𝜋 and the isomorphism ofTheorem
3.17.

Theorem 3.17 also allows us to define the Euler class.

Definition 3.19. Let𝜉be an orientedR𝑛-bundle over𝐵with total space𝐸. TheEuler class of𝜉, denoted
𝑒(𝜉) ∈ 𝐻𝑛(𝐵;Z), is the image of 𝑢 ∈ 𝐻𝑛(𝐸, 𝐸0;Z) under

𝐻𝑛(𝐸, 𝐸0;Z) 𝐻𝑛(𝐸;Z) 𝐻𝑛(𝐵;Z)𝛨𝑛(𝜋)−1

where the left homomorphism is induced by the inclusion (𝐸, ∅) ↪ (𝐸, 𝐸0). TheEuler class of a smooth
oriented manifold𝑀 is defined as the Euler class of its tangent bundle and is denoted by 𝑒(𝑀).

The next result is easily proven and, as we will see, it is satisfied for all characteristic classes.

Proposition 3.20. (Naturality) Let 𝜉, 𝜂 be oriented R𝑛-bundles. If 𝑔 ∶ 𝐵(𝜉) → 𝐵(𝜂) is covered by an
orientation preserving bundle map 𝜉 → 𝜂, then 𝑒(𝜉) = 𝐻𝑛(𝑔)(𝑒(𝜂)).

Other important results that are somewhat satisfied for all characteristic classes are the following.

Proposition 3.21. The Euler class of a trivialR𝑛-bundle is zero.

Proof. Use the above naturality propertywith 𝜉 such a trivial bundle and 𝜂 the trivial bundlewith a point
as base space. Since the 𝑛th cohomology of a point vanishes, the result follows.

Proposition 3.22. (Whitney product formula) Let 𝜉 and 𝜂 be oriented vector bundles over 𝐵. Then

𝑒(𝜉 ⊕ 𝜂) = 𝑒(𝜉) ` 𝑒(𝜂).

Here we regard 𝜉 ⊕ 𝜂 as an oriented vector bundle with orientation on 𝐹𝑏(𝜉) ⊕ 𝐹𝑏(𝜂) given by an oriented
basis for 𝐹𝑏(𝜉) followed by an oriented basis for 𝐹𝑏(𝜂).

Proof. Let 𝑛,𝑚 be the fiber dimensions of 𝜉, 𝜂, respectively. Using the last diagram of Remark 1.57, it is
easily seen that 𝑢(𝜉 × 𝜂) = 𝑢(𝜉) × 𝑢(𝜂). Again by Remark 1.57, it follows that 𝑒(𝜉 × 𝜂) = 𝑒(𝜉) × 𝑒(𝜂).
Pulling back by the diagonal embedding 𝑑 ∶ 𝐵 → 𝐵 × 𝐵 and using Proposition 3.20 gives the result.
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Now we carry on by giving a proof of Theorem 3.17. We begin with a bunch of lemmas. Unless
stated otherwise, coefficients in an arbitrary commutative ring with unit are to be considered.

Let 𝑒 ∈ 𝐻1(R,R0) be the cohomology class corresponding to 1 ∈ 𝐻0(R+) under the sequence of
isomorphisms

𝐻0(R+) 𝐻0(R0,R−) 𝐻1(R,R0)
∼ ∼

where the left one is induced by the inclusion (R+, ∅) ↪ (R0,R−) (and it is an isomorphismby excision)
and the right one is the connecting homomorphism of the long exact sequence of the triple (R,R0,R−)
(and it is an isomorphism because𝐻𝑖(R,R−) = 0 since R− is a deformation retract of R). We denote
the 𝑛-fold cross product 𝑒 × … × 𝑒 by 𝑒𝑛 ∈ 𝐻𝑛(R𝑛,R𝑛

0).

Lemma 3.23. Let𝑋 be a topological space and let𝐴 ⊆ 𝑋 be an open subset. Then, for every integer 𝑖 ≥ 0,
the map

𝐻𝑖(𝑋, 𝐴) → 𝐻𝑛+𝑖(R𝑛 × 𝑋,R𝑛 × 𝐴 ∪R𝑛
0 × 𝑋)

𝑎 ↦ 𝑒𝑛 × 𝑎

is an isomorphism.

Proof. We proceed by induction on 𝑛. Assume we have already proven the initial case 𝑛 = 1 and that the
result is true for 𝑛 − 1. Then, the correspondence 𝑎 ↦ 𝑒𝑛 × 𝑎 can be written as the composition of two
isomorphisms 𝑎 ↦ 𝑒𝑛−1 × 𝑎 ↦ 𝑒 × (𝑒𝑛−1 × 𝑎) = 𝑒𝑛 × 𝑎, where the equality follows from the associativity
of the cross product. We can thus assume that 𝑛 = 1 for the rest of the proof.

Step 1: Suppose that𝐴 = ∅. Let 𝑎 ∈ 𝐻𝑖(𝑋). We claim that the diagram

𝐻0(R+) 𝐻0(R0,R−) 𝐻1(R,R0)

𝐻𝑖(R+ × 𝑋) 𝐻𝑖(R0 × 𝑋,R− × 𝑋) 𝐻𝑖+1(R × 𝑋,R0 × 𝑋)

×𝑎 ×𝑎 ×𝑎

commutes. Horizontal left arrows are excision isomorphisms andhorizontal right arrows are the connect-
ing homomorphisms of the long exact sequences of triples (R,R0,R−) and (R×𝑋,R0×𝑋,R−×𝑋). The
upper one has already been seen to be an isomorphism, whereas the lower one is also an isomorphism by
an analogous reason. Commutativity of the left square is justified by Remark 1.57. Commutativity of
the right square is argued by Remark 1.57 and also Remark 1.17. Now, we have𝐻𝑖(𝑋) ≅ 𝐻𝑖(R+ × 𝑋)
naturally by the correspondence 𝑎 ↦ 1 × 𝑎. Finally, following the diagram around, we see that 𝑒 × 𝑎 ∈
𝐻𝑖+1(R × 𝑋,R0 × 𝑋) is the image of 𝑎 ∈ 𝐻𝑖(𝑋) under a sequence of isomorphisms.

Step 2: Suppose that𝐴 is an arbitrary open subset of𝑋. Let 𝑧 ∈ 𝑍1(R,R0) be a cocycle representing
𝑒 ∈ 𝐻1(R,R0). Then, the diagram

0 𝐶𝑖(𝑋, 𝐴) 𝐶𝑖(𝑋) 𝐶𝑖(𝐴) 0

0 𝐶𝑖+1(R𝑛 × 𝑋,R𝑛 × 𝐴 ∪R𝑛
0 × 𝑋) 𝐶𝑖+1(R × 𝑋,R0 × 𝑋) 𝐶𝑖+1(R × 𝐴,R0 × 𝐴) 0

𝑧× 𝑧× 𝑧×

commutes. Indeed, this follows again from Remark 1.57. The upper row is already known to be exact
and the lower one can be easily seen to be. Now, by Remark 1.17, we have a commutative diagram in
cohomology

⋯ 𝐻𝑖(𝑋, 𝐴) 𝐻𝑖(𝑋) 𝐻𝑖(𝐴) ⋯

⋯ 𝐻𝑖+1(R𝑛 × 𝑋,R𝑛 × 𝐴 ∪R𝑛
0 × 𝑋) 𝐻𝑖+1(R × 𝑋,R0 × 𝑋) 𝐻𝑖+1(R × 𝐴,R0 × 𝐴) ⋯

𝑒× 𝑒× 𝑒×
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in which both rows are exact. Notice that each𝐻𝑖(𝑋, 𝐴) → 𝐻𝑖+1(𝑋×R, 𝑋×R0 ∪𝐴×R) is surrounded
by four maps that, by step 1, are isomorphisms. Hence, the Five Lemma 1 finishes the proof.

Lemma 3.24. Let 𝑓 ∶ (𝐴•, 𝜕
𝛢
• ) → (𝐵•, 𝜕

𝛣
• ) be a linear map between free chain complexes over Z that

satisfies (𝜕𝛣 ∘ 𝑓) = 𝑠(𝑓 ∘ 𝜕𝛢) for some fixed 𝑠 = {−1, +1}.2 If 𝑓 induces isomorphisms in cohomology

𝐻𝑛(𝑓) ∶ 𝐻𝑛(𝐵; 𝐿) → 𝐻𝑛(𝐴; 𝐿)

for every integer 𝑛 and every field 𝐿, then it induces isomorphisms in homology

𝐻𝑛(𝑓) ∶ 𝐻𝑛(𝐴; 𝑅) → 𝐻𝑛(𝐵; 𝑅)

and in cohomology
𝐻𝑛(𝑓) ∶ 𝐻𝑛(𝐵; 𝑅) → 𝐻𝑛(𝐴; 𝑅)

for every integer 𝑛 and every commutative ring with unit 𝑅.

Proof. Denote the boundary maps of the chain complexes 𝐴• and 𝐵• by 𝜕
𝛢 and 𝜕𝛣, respectively. Let

𝐶𝑓
𝑛 = 𝐴𝑛−1 ⊕ 𝐵𝑛 and

𝜕𝑓𝑛 ∶ 𝐶𝑓
𝑛 ⟶𝐶𝑓

𝑛−1

(𝑎, 𝑏) ⟼ (−𝑠𝜕𝛢𝑎, 𝑓(𝑎) + 𝜕𝛣𝑏).

Since 𝜕𝑓𝑛−1 ∘ 𝜕
𝑓
𝑛 = 0, (𝐶𝑓

• , 𝜕
𝑓
• ) is a free chain complex over Z, which will be called themapping cone of 𝑓.

One can easily check that the sequence of chain complexes

0 𝐵𝑛 𝐶𝑓
𝑛 𝐴𝑛−1 0,

where the maps are the obvious ones, is exact. It is not hard to see that the connecting homomorphism
of the corresponding long exact sequence coincides with𝐻𝑛(𝑓) ∶ 𝐻𝑛(𝐴; 𝑅) → 𝐻𝑛(𝐵; 𝑅). Hence,𝐻𝑛(𝑓)
being an isomorphism for every integer 𝑛 is equivalent to𝐻𝑛(𝐶

𝑓; 𝑅) being zero for every integer 𝑛.
Similarly, since the previous short exact sequence splits (notice that𝐴𝑛−1 is free), its dual is also exact

and we obtain a long exact sequence in cohomology whose connecting homomorphism coincides with
𝐻𝑛(𝑓) ∶ 𝐻𝑛(𝐵; 𝑅) → 𝐻𝑛(𝐴; 𝑅). Hence,𝐻𝑛(𝑓) being an isomorphism for every integer 𝑛 is equivalent
to𝐻𝑛(𝐶𝑓; 𝑅) being 0 for every integer 𝑛. By hypothesis, the first statement is true for every field 𝐿 so we
must also have𝐻𝑛(𝐶𝑓; 𝐿) = 0 for every integer 𝑛 and every field 𝐿. By the universal coefficient theorem

for cohomology 1.39, we have an isomorphism𝐻𝑛(𝐶𝑓; 𝐿) ≅ Hom𝐿(𝐻𝑛(𝐶
𝑓; 𝐿), 𝐿). Thus, the homology

modules𝐻𝑛(𝐶
𝑓; 𝐿) = 𝐻𝑛(𝐶

𝑓 ⊗ 𝐿; 𝐿) also vanish for every field 𝐿.
As already said, it suffices to show that𝐻𝑛(𝐶

𝑓; 𝑅) = 𝐻𝑛(𝐶𝑓; 𝑅) = 0 for every 𝑛 and every commu-

tative ring with unit 𝑅. Let us deal first with the homology case with 𝑅 = Z. Since𝐻𝑛(𝐶
𝑓 ⊗ Q) = 0,

every cycle 𝑧 ∈ 𝑍𝑛(𝐶
𝑓) has a multiple that is a boundary, so𝐻𝑛(𝐶

𝑓) is a torsion group. By a simple in-

ductive argument, it suffices to check that every element of prime order in𝐻𝑛(𝐶
𝑓) is actually zero. Let

𝑧 ∈ 𝑍𝑛(𝐶
𝑓) such that 𝑝𝑧 is a boundary for some prime 𝑝. Then,

𝑝𝑧 = 𝜕𝑐 (∗)

for some 𝑐 ∈ 𝐶𝑓
𝑛+1. In particular, 𝑐 is a cycle mod 𝑝 (i.e. applying Z → Z𝑝 to every coefficient of 𝑐, we

obtain an element of 𝑍𝑛+1(𝐶
𝑓 ⊗ Z𝑝)). Since𝐻𝑛(𝐶

𝑓 ⊗ Z𝑝) = 0, 𝑐 is also a boundary mod 𝑝, so we can
write

𝑐 = 𝜕𝑐′ + 𝑝𝑐″ ∈ 𝐶𝑓
𝑛+1

1See [Hat01] p.129 for the statement and a proof.
2This can be thought as a generalization of the concept of chain map, for which 𝑠 = +1. In either case, 𝑓 sends cycles to

cycles and boundaries to boundaries, so 𝑓 induces morphisms in homology and, similarly, in cohomology.
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for some 𝑐′ ∈ 𝐶𝑓
𝑛+2 and some 𝑐″ ∈ 𝐶𝑓

𝑛+1. Substituting this expression into (∗), we get

𝑝𝑧 = 𝜕(𝜕𝑐′ + 𝑝𝑐″) = 𝑝𝜕𝑐″.

Hence, 𝑧 = 𝜕𝑐″ is a boundary. This shows that𝐻𝑛(𝐶
𝑓) = 0.

Now, for a general 𝑅, the universal coefficient theorem for homology 1.20 can be used to obtain

𝐻𝑛(𝐶
𝑓; 𝑅) = 0. Finally, the universal coefficient theorem for cohomology can be used again to obtain

𝐻𝑛(𝐶𝑓; 𝑅) = 0.

Now we will state and prove a series of claims that will combine to yield a proof of Theorem 3.17
in the general case. Notice first that condition (i) is a consequence of (iii), so we will restrict ourselves to
show only (ii) and (iii).

Claim 3.25. Theorem 3.17 is true if 𝜉 is a trivial vector bundle.

Proof. We can identify the total space of 𝜉 with R𝑛 × 𝐵 (cf. 3.5). By naturality (cf. Remark 1.57), for
every 𝑏 ∈ 𝐵, we have a commutative diagram

𝐻0(𝐵; 𝑅) 𝐻𝑛(R𝑛 × 𝐵,R𝑛
0 × 𝐵; 𝑅)

𝐻0(𝑁; 𝑅) 𝐻𝑛(R𝑛 × 𝑁,R𝑛
0 × 𝑁; 𝑅)

𝐻0({𝑏}; 𝑅) 𝐻𝑛(R𝑛 × {𝑏},R𝑛
0 × {𝑏}; 𝑅)

≅

≅

≅

where 𝑁 is a neighborhood of 𝑏 chosen by the local compatibility condition. The vertical arrows are
induced by inclusions and the horizontal ones are isomorphisms by Lemma 3.23. The neighborhood𝑁
of every 𝑏 ∈ 𝐵 is chosen by the local compatibility condition. Let 𝑣𝑏 ∈ 𝐻0({𝑏}; 𝑅) be the cohomology
class that maps to the preferred generator 𝑢𝐹𝑏 ∈ 𝐻

𝑛(R𝑛 × {𝑏},R𝑛
0 × {𝑏}; 𝑅) under the bottom horizontal

arrow of the diagram. A representative 𝜑𝑏 ∈ 𝐶0({𝑏}; 𝑅) of 𝑣𝑏 can be thought of as a map {𝑏} → 𝑅, or
equivalently, as an element 𝜑𝑏(𝑏) of 𝑅. By the local compatibility condition and commutativity of the
bottom square of the diagram, 𝐵 can be covered by open subsets𝑁 ⊆ 𝐵 for which there are cohomology
classes 𝑣𝛮 ∈ 𝐻𝑛(𝑁; 𝑅) that restrict to 𝑣𝑏 ∈ 𝐻

𝑛({𝑏}; 𝑅) for every 𝑏 ∈ 𝑁. Thismeans that if𝜑𝛮 ∈ 𝐶0(𝑁; 𝑅)
(𝜑𝛮 ∶ 𝑁 → 𝑅) is a representative of the class 𝑣𝛮, then 𝜑𝛮(𝑏) = 𝜑𝑏(𝑏) for every 𝑏 ∈ 𝑁.

Now, let

𝜑 ∶ 𝐵 → 𝑅
𝑏 ↦ 𝜑𝑏(𝑏).

We want to show that 𝜑 is a cocycle. If 𝜎 ∶ [0, 1] ≅ Δ1 → 𝐵 is a 1-simplex, its image being compact
can be covered by finitely many open subsets of 𝐵, say𝑁0, … ,𝑁𝑘. We can then pick 0 = 𝑡0 < 𝑡1 < … <
𝑡𝑙−1 < 𝑡𝑙 = 1 so that the image of each interval [𝑡𝑖, 𝑡𝑖+1] by 𝜎 lies in some 𝑁𝑗. Notice that the 1-chain
𝜎|[𝑡0,𝑡1] + … + 𝜎|[𝑡𝑙−1,𝑡𝑙] has the same boundary as 𝜎, so we have

𝜑(𝜕𝜎) =
𝑙−1
∑
𝑖=0

𝜑(𝜕𝜎|[𝑡𝑖,𝑡𝑖+1]) =
𝑙−1
∑
𝑖=0

𝜑𝛮𝑗𝑖(𝜕𝜎|[𝑡𝑖,𝑡𝑖+1]) = 0,

because each 𝜑𝛮𝑗 is already assumed to be a cocycle.

Hence, 𝜑 ∈ 𝐶0(𝐵; 𝑅) represents a cohomology class 𝑣 ∈ 𝐻0(𝐵; 𝑅) that restricts to 𝑣𝑏 for every 𝑏 ∈ 𝐵.
Using the commutativity of the diagram one last time, the image of 𝑣 by the top horizontal arrow yields
the desired cohomology class 𝑢 = 𝑒𝑛 × 𝑣 ∈ 𝐻𝑛(R𝑛 × 𝐵,R𝑛

0 × 𝐵; 𝑅). The uniqueness of this class is also
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clear from the uniqueness of the map 𝜑 ∶ 𝐵 → 𝑅, so this proves part (ii) of the Theorem.

For part (iii), let 𝑝1 ∶ (R
𝑛 × 𝐵,R𝑛

0 × 𝐵) → (R𝑛,R𝑛
0), 𝑝2 ∶ (R

𝑛 × 𝐵, ∅) → (𝐵, ∅) be the projection
maps. Then, for every 𝑦 ∈ 𝐻𝑘(R𝑛 × 𝐵; 𝑅), we have

𝑢 ` 𝑦 = (𝑒𝑛 × 𝑣) ` 𝑦 = (𝐻𝑛(𝑝1)(𝑒
𝑛) ` 𝐻0(𝑝2)(𝑣)) ` 𝑦

= 𝐻𝑛(𝑝1)(𝑒
𝑛) ` (𝐻0(𝑝2)(𝑣) ` 𝑦) = 𝐻𝑛(𝑝1)(𝑒

𝑛) ` 𝐻𝑘(𝑝2)(𝑣 ` 𝐻𝑘(𝑝2)
−1(𝑦))

= 𝑒𝑛 × (𝑣 ` 𝐻𝑘(𝑝2)
−1(𝑦)).

The correspondence 𝑦 ↦ 𝐻𝑘(𝑝2)
−1(𝑦) is a well-defined isomorphism because 𝑝2 is a homotopy equiva-

lence. Since the cocycle𝜑 ∶ 𝐵 → 𝑅 takes each point 𝑏 ∈ 𝐵 to a generator of𝑅, the cohomology class 𝑣 has
an inverse with respect to the cup product. The correspondence 𝑧 ↦ 𝑣 ` 𝑧 is thus an isomorphism. The
map 𝑎 ↦ 𝑒𝑛 × 𝑎 is also an isomorphism by Lemma 3.23. Hence, 𝑢 ` 𝑦 is the image of 𝑦 by a sequence of
isomorphisms, so 𝑦 ↦ 𝑢 ` 𝑦 is an isomorphism as well. This finishes the proof of the claim.

Claim 3.26. Assume that the base space 𝐵 of 𝜉 is the union of two open subsets 𝐵1 and 𝐵2. Denote 𝐵3 =
𝐵1 ∩ 𝐵2. If Theorem 3.17 is true for the restriction bundles 𝜉|𝛣1 , 𝜉|𝛣2 and 𝜉|𝛣3 , then it is also true for 𝜉.

Proof. Denote the total space of 𝜉|𝛣𝑖 by𝐸
𝑖. The relativeMayer-Vietoris sequence 1.49 for𝑋 = 𝐸,𝑌 = 𝐸0,

𝐴 = 𝐸1, 𝐵 = 𝐸2,𝐶 = 𝐸1
0 ,𝐷 = 𝐸2

0 is the long exact sequence

⋯ 𝐻𝑖(𝐸, 𝐸0; 𝑅) 𝐻𝑖(𝐸1, 𝐸1
0 ; 𝑅) ⊕ 𝐻𝑖(𝐸2, 𝐸2

0 ; 𝑅) 𝐻𝑖(𝐸3, 𝐸3
0 ; 𝑅)

𝐻𝑖+1(𝐸, 𝐸0; 𝑅) ⋯

𝑓=(𝑓1,𝑓2) 𝑔=𝑔1−𝑔2

where 𝑓1, 𝑓2, 𝑔1 and 𝑔2 are restriction homomorphisms. By hypothesis, there are unique cohomology
classes 𝑢1 ∈ 𝐻𝑛(𝐸1, 𝐸1

0 ; 𝑅), 𝑢2 ∈ 𝐻𝑛(𝐸2, 𝐸2
0 ; 𝑅), 𝑢3 ∈ 𝐻𝑛(𝐸3, 𝐸3

0 ; 𝑅) whose restrictions to each fiber 𝐹
over 𝐵1, 𝐵2 or 𝐵3 are the chosen generators 𝑢𝐹 ∈ 𝐻𝑛(𝐹, 𝐹0; 𝑅). By uniqueness of 𝑢3, the classes 𝑢1 and
𝑢2 have image 𝑢3 under the restriction homomorphism. Hence, (𝑢1, 𝑢2) ∈ ker 𝑔 = im𝑓 and there is a
𝑢 ∈ 𝐻𝑛(𝐸, 𝐸0; 𝑅) whose restriction to (𝐸1, 𝐸1

0 ), (𝐸
2, 𝐸2

0 ) is 𝑢1 and 𝑢2, respectively. In particular, 𝑢 re-
stricts to 𝑢𝐹 for every fiber 𝐹 over 𝐵. Now, if 𝑢 is another class that satisfies the same property, then, by
uniqueness of 𝑢1 and 𝑢2, it restricts to 𝑢1 and 𝑢2. But by hypothesis, we have𝐻

𝑛−1(𝐸3, 𝐸3
0 ; 𝑅) = 0, so 𝑓

is injective and hence 𝑢 = 𝑢, thus proving part (ii) of the Theorem.

For part (iii), let us first consider the Mayer-Vietoris sequence 1.48 for𝑋 = 𝐸,𝐴 = 𝐸1 and 𝐵 = 𝐸2:

⋯ 𝐻𝑗(𝐸; 𝑅) 𝐻𝑗(𝐸1; 𝑅) ⊕ 𝐻𝑗(𝐸2; 𝑅) 𝐻𝑗(𝐸3; 𝑅)

𝐻𝑗+1(𝐸; 𝑅) ⋯ .

𝑓=(𝑓1,𝑓2) 𝑔=𝑔1−𝑔2

Now, let 𝜑, 𝜑𝑖 be cocycles representing the classes 𝑢, 𝑢𝑖, respectively. Then, the diagram

0 𝐶𝑘(𝐸) 𝐶𝑘(𝐸1) ⊕ 𝐶𝑘(𝐸2) 𝐶𝑘(𝐸3) 0

0 𝐶𝑘+𝑛(𝐸, 𝐸0) 𝐶𝑘+𝑛(𝐸1, 𝐸1
0 ) ⊕ 𝐶𝑘+𝑛(𝐸2, 𝐸2

0 ) 𝐶𝑘+𝑛(𝐸3, 𝐸0) 0

𝜑` (𝜑1`,𝜑2`) 𝜑3`
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is easily seen to commute (coefficients in 𝑅 are to be understood for the rest of the proof). Its rows are
the short exact sequences that induce the previous Mayer-Vietoris sequences. Then, by naturality 1.17,
we can attach bothMayer-Vietoris sequences together in a commutative diagram

⋯ 𝐻𝑘(𝐸) 𝐻𝑘(𝐸1) ⊕ 𝐻𝑘(𝐸2) 𝐻𝑘(𝐸3) 𝐻𝑘+1(𝐸) ⋯

⋯ 𝐻𝑘+𝑛(𝐸, 𝐸0) 𝐻𝑘+𝑛(𝐸1, 𝐸1
0 ) ⊕ 𝐻𝑘+𝑛(𝐸2, 𝐸2

0 ) 𝐻𝑘+𝑛(𝐸3, 𝐸3
0 ) 𝐻𝑘+𝑛+1(𝐸, 𝐸0) ⋯ .

𝑢` (𝑢1`,𝑢2`) 𝑢3` 𝑢`

Notice that each homomorphism𝐻𝑘(𝐸)
𝑢`
⟶𝐻𝑘+𝑛(𝐸, 𝐸0) is surrounded by four maps that, by hypoth-

esis, are isomorphisms, so the Five Lemma finishes the proof.

Claim 3.27. Theorem 3.17 is true if the base space 𝐵 is compact.

Proof. Cover 𝐵 with open subsets𝑁 that are the domains of local coordinate systems (𝑁, ℎ). Then, 𝐵
is the union of a finite number of such domains, say 𝐵 = 𝑁1 ∪ … ∪ 𝑁𝑚. We will prove by induction that
the Theorem is true for the restriction bundles 𝜉|𝛮1∪…∪𝛮𝑖 with 𝑖 = 1, … ,𝑚. The case 𝑖 = 1 follows from
Claim 3.25 because 𝜉|𝛮1 is trivial. Assume that 𝜉|𝛮1∪…∪𝛮𝑖−1 satisfies the properties (i)-(iii) of the Theorem.
Again by Claim 3.25, these are also satisfied for 𝜉|𝛮𝑖 and 𝜉|(𝛮1∪…∪𝛮𝑖−1)∩𝛮𝑖 because they are trivial bundles.
By Claim 3.26, the Theorem is thus true for 𝜉|𝛮1∪…∪𝛮𝑖 , as wanted. In particular, setting 𝑖 = 𝑚 finishes the
proof of the claim.

For the next claim, we will need some definitions and results that are important by themselves.

Definition 3.28. A directed set is a pair (𝐼, ≤) where 𝐼 is a non-empty set and ≤ is a preorder (reflexive
and transitive relation) on 𝐼 such that for every 𝑖, 𝑗 ∈ 𝐼 there exists 𝑘 ∈ 𝐼with 𝑖 ≤ 𝑘 and 𝑗 ≤ 𝑘.

Definition 3.29. Let (𝐼, ≤) be a directed set, 𝑅 an commutative ring with unit and {𝐴𝑖}𝑖∈𝛪 a family of
𝑅-modules indexed by 𝐼 such that for every 𝑖 ≤ 𝑗 there is an 𝑅-linear map 𝑓𝑖𝑗 ∶ 𝐴𝑖 → 𝐴𝑗 satisfying

(i) 𝑓𝑖𝑖 = id𝛢𝑖 ∶ 𝐴𝑖 → 𝐴𝑖 and

(ii) 𝑓𝑖𝑘 = 𝑓𝑗𝑘 ∘ 𝑓𝑖𝑗 for every 𝑖 ≤ 𝑗 ≤ 𝑘.

Then, the pair ({𝐴𝑖}, {𝑓𝑖𝑗}) is called adirect system of𝑅-modules over 𝐼. We define an equivalence relation
∼ on the disjoint union⨆

𝑖∈𝛪
𝐴𝑖 by

𝑎𝑖 ∼ 𝑎𝑗 with 𝑎𝑖 ∈ 𝐴𝑖, 𝑎𝑗 ∈ 𝐴𝑗 ⇔ 𝑓𝑖𝑘(𝑎𝑖) = 𝑓𝑗𝑘(𝑎𝑗) for some 𝑘 ∈ 𝐼with 𝑖 ≤ 𝑘, 𝑗 ≤ 𝑘.

For every 𝑎, 𝑏 ∈ ⨆
𝑖∈𝛪
𝐴𝑖, we can then take 𝑎

′, 𝑏′ ∈ ⨆
𝑖∈𝛪
𝐴𝑖 lying in the same module𝐴𝑘 and satisfying 𝑎 ∼ 𝑎′,

𝑏 ∼ 𝑏′. We define a binary operation on⨆
𝑖∈𝛪
𝐴𝑖/ ∼ by [𝑎] + [𝑏] = [𝑎′ + 𝑏′]. We also define an action

𝑟 ⋅ [𝑎] = [𝑟𝑎] for every 𝑟 ∈ 𝑅, 𝑎 ∈ ⨆𝑖 𝐴𝑖. It can be seen that these operations are well-defined and define

an𝑅-module structure on⨆
𝑖∈𝛪
𝐴𝑖/ ∼. This𝑅-module will be called the direct limit of the directed system

({𝐴𝑖}, {𝑓𝑖𝑗}) and will be denoted lim⟶ 𝐴𝑖.

Definition 3.30. Let (𝐼, ≤) be a directed set,𝑅 be an commutative ringwith unit and {𝐴𝑖}𝑖∈𝛪 be a family
of 𝑅-modules indexed by 𝐼 such that for every 𝑖 ≤ 𝑗 there is an 𝑅-linear map 𝑓𝑖𝑗 ∶ 𝐴𝑗 → 𝐴𝑖 satisfying

(i) 𝑓𝑖𝑖 = id𝛢𝑖 ∶ 𝐴𝑖 → 𝐴𝑖 and

(ii) 𝑓𝑖𝑘 = 𝑓𝑖𝑗 ∘ 𝑓𝑗𝑘 for every 𝑖 ≤ 𝑗 ≤ 𝑘.
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Then, the pair ({𝐴𝑖}, {𝑓𝑖𝑗}) is called an inverse system of 𝑅-modules over 𝐼. The inverse limit of the pair
({𝐴𝑖}, {𝑓𝑖𝑗}) is the 𝑅-submodule of∏

𝑖∈𝛪
𝐴𝑖

lim⟵ 𝐴𝑖 = {𝑎 = (𝑎𝑖)𝑖∈𝛪 ∈ ∏
𝑖∈𝛪

𝐴𝑖 ∶ 𝑎𝑖 = 𝑓𝑖𝑗(𝑎𝑗) for all 𝑖 ≤ 𝑗}

Proposition 3.31. Let 𝑅 be an commutative ring with unit, 𝑋 and 𝑌 topological spaces, 𝐴 ⊆ 𝑋. Let
𝑓 ∶ 𝑋 → 𝑌 be a continuous map and let {𝑋𝑖}𝑖∈𝛪 be a covering of𝑋 whose index set 𝐼 is a directed set with
respect to the inclusion relation and satisfies that for every compact 𝐶 ⊆ 𝑌, 𝑓−1(𝐶) is contained in some𝑋𝑖.
Set 𝐴𝑖 = 𝐴 ∩ 𝑋𝑖. Then, the pairs ({𝐻𝑚(𝑋𝑖, 𝐴𝑖; 𝑅)}𝑖∈𝛪, {𝑓𝑖𝑗}), ({𝐻

𝑚(𝑋𝑖, 𝐴𝑖; 𝑅)}𝑖∈𝛪, {𝑔𝑖𝑗}) form a directed
system and an inverse system, respectively, with maps 𝑓𝑖𝑗, 𝑔𝑖𝑗 induced by inclusion. Furthermore:

(i) The natural map
𝜌 ∶ lim⟶ 𝐻𝑚(𝑋𝑖, 𝐴𝑖; 𝑅) → 𝐻𝑚(𝑋, 𝐴; 𝑅)

that takes a class [𝜇] with 𝜇 ∈ 𝐻𝑚(𝑋𝑖, 𝐴𝑖; 𝑅) to𝐻𝑚(𝛾𝑖)(𝜇) ∈ 𝐻𝑚(𝑋, 𝐴; 𝑅) where 𝛾𝑖 is the inclusion
(𝑋𝑖, 𝐴𝑖) ↪ (𝑋,𝐴) is a well-defined isomorphism.

(ii) If𝐻𝑚−1(𝑋, 𝐴; 𝑅),𝐻𝑚−1(𝑋𝑖, 𝐴𝑖; 𝑅) are zero or free 𝑅-modules, then the natural map

𝜅 ∶ 𝐻𝑚(𝑋, 𝐴; 𝑅) → lim⟵ 𝐻𝑚(𝑋𝑖, 𝐴𝑖; 𝑅)

that takes 𝑢 ∈ 𝐻𝑚(𝑋, 𝐴; 𝑅) to (𝐻𝑚(𝛾𝑖)(𝑢))𝑖∈𝛪 ∈ ∏
𝑖∈𝛪

𝐻𝑚(𝑋𝑖, 𝐴𝑖; 𝑅) is an isomorphism as well.

Proof. The fact that the given pairs form a directed system and an inverse system can be straightforwardly
checked.

(i) If 𝜇 ∈ 𝐻𝑚(𝑋𝑖, 𝐴𝑖; 𝑅) and 𝜂 ∈ 𝐻𝑚(𝑋𝑗, 𝐴𝑗; 𝑅) represent the same class, then we can take 𝑘 ∈ 𝐼 with
𝑖 ≤ 𝑘, 𝑗 ≤ 𝑘 and 𝑓𝑖𝑘(𝜇) = 𝑓𝑗𝑘(𝜂). From the commutative diagram

𝐻𝑚(𝑋𝑗, 𝐴𝑗; 𝑅) 𝐻𝑚(𝑋𝑘, 𝐴𝑘; 𝑅) 𝐻𝑚(𝑋𝑖, 𝐴𝑖; 𝑅)

𝐻𝑚(𝑋, 𝐴; 𝑅)

𝑓𝑗𝑘

𝛾𝑗
𝛾𝑘

𝑓𝑖𝑘

𝛾𝑖

in which all arrows are induced by inclusion, we deduce that𝐻𝑚(𝛾𝑖)(𝜇) = 𝐻𝑚(𝛾𝑗)(𝜂) so the natural
map is, indeed, well-defined.

Let 𝑧 ∈ 𝑍𝑚(𝑋, 𝐴; 𝑅) be a relative cycle and express it as a finite sum of𝑚-simplices 𝜎𝛼. Since Δ
𝑚 is

compact, the set𝐶 = ⋃𝛼(𝑓 ∘ 𝜎𝛼)(Δ
𝑚) is compact in 𝑌. Take𝑋𝑖 that contains 𝑓

−1(𝐶). Then𝑋𝑖 also
contains⋃𝛼 𝜎𝛼(Δ

𝑚), so 𝑧 is a relative cycle in 𝑍𝑚(𝑋𝑖, 𝐴𝑖; 𝑅). This proves surjectivity of 𝜌.
Let [𝜇] ∈ lim⟶ 𝐻𝑚(𝑋𝑖, 𝐴𝑖; 𝑅), 𝜇 ∈ 𝐻𝑚(𝑋𝑖, 𝐴𝑖; 𝑅) such that 𝜌∗([𝜇]) = 𝐻𝑚(𝛾𝑖)(𝜇) = 0. This
means that if 𝑧 ∈ 𝑍𝑚(𝑋𝑖, 𝐴𝑖; 𝑅) is a relative cycle representing 𝜇, then 𝑧 is a relative boundary in
𝐵𝑚(𝑋, 𝐴; 𝑅), so it can be written as 𝑧 = 𝑧′ + 𝜕𝑧″ with 𝑧′ ∈ 𝐶𝑚(𝐴; 𝑅) and 𝑧

″ ∈ 𝐶𝑚+1(𝑋; 𝑅). Pro-
ceeding similarly as before, we can take𝑋𝑗 containing the simplices that form 𝑧′ and 𝑧″ and then we
take𝑋𝑘 containing𝑋𝑖 and𝑋𝑗. Then, 𝑧 is a relative boundary in𝐵𝑚(𝑋𝑘, 𝐴𝑘; 𝑅), so it must be the zero
element in lim⟶ 𝐻𝑚(𝑋𝑖, 𝐴𝑖; 𝑅). This proves injectivity of 𝜌.

(ii) The homomorphisms

ℎ ∶ 𝐻𝑚(𝑋, 𝐴; 𝑅) → Hom𝑅(𝐻𝑚(𝑋, 𝐴; 𝑅), 𝑅),

ℎ𝑖 ∶ 𝐻
𝑚(𝑋𝑖, 𝐴𝑖; 𝑅) → Hom𝑅(𝐻𝑚(𝑋𝑖, 𝐴𝑖; 𝑅), 𝑅)
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of theuniversal coefficient theoremfor cohomology are isomorphisms if𝐻𝑚−1(𝑋, 𝐴; 𝑅),𝐻𝑚−1(𝑋𝑖, 𝐴𝑖; 𝑅)
are zero or free 𝑅-modules. Consider also the map

𝜒 ∶ Hom𝑅(lim⟶ 𝐻𝑚(𝑋𝑖, 𝐴𝑖; 𝑅), 𝑅) → lim⟵ Hom𝑅(𝐻𝑚(𝑋𝑖, 𝐴𝑖; 𝑅), 𝑅)

that takes an arrow lim⟶ 𝐻𝑚(𝑋𝑖, 𝐴𝑖; 𝑅)
Ψ⟶ 𝑅 to (𝐻𝑚(𝑋𝑖, 𝐴𝑖; 𝑅)

Θ𝑖⟶ 𝑅)𝑖∈𝛪, whereΘ(𝑎𝑖) = Ψ([𝑎𝑖])
for every 𝑎𝑖 ∈ 𝐻𝑚(𝑋𝑖, 𝐴𝑖; 𝑅). This is easily seen to be an isomorphism. It is straightforward to verify
that the diagram

𝐻𝑚(𝑋, 𝐴; 𝑅) lim⟵ 𝐻𝑚(𝑋𝑖, 𝐴𝑖; 𝑅)

Hom𝑅(𝐻𝑚(𝑋, 𝐴; 𝑅), 𝑅) lim⟵ Hom𝑅(𝐻𝑚(𝑋𝑖, 𝐴𝑖; 𝑅), 𝑅)

Hom𝑅(lim⟶ 𝐻𝑚(𝑋𝑖, 𝐴𝑖; 𝑅), 𝑅)

𝜅

ℎ ∏
𝑖∈𝛪

ℎ𝑖

𝜌∗ 𝜒

commutes. Since every arrow apart from 𝜅 is an isomorphism, 𝜅must be an isomorphism too.

As a consequence, we have the following corollary.

Corollary 3.32. Let 𝑅 be a field and let 𝜉 be an R𝑛-bundle over 𝐵 with total space 𝐸 and projection 𝜋 ∶
𝐸 → 𝐵. Then, the natural 𝑅-linear maps

lim⟶ 𝐻𝑚(𝜋
−1(𝐶); 𝑅) → 𝐻𝑚(𝐸; 𝑅), lim⟶ 𝐻𝑚(𝜋

−1(𝐶), 𝜋−1(𝐶)0; 𝑅) → 𝐻𝑚(𝐸, 𝐸0; 𝑅),

𝐻𝑚(𝐸; 𝑅) → lim⟵ 𝐻𝑚(𝜋−1(𝐶); 𝑅), 𝐻𝑚(𝐸, 𝐸0; 𝑅) → lim⟵ 𝐻𝑚(𝜋−1(𝐶), 𝜋−1(𝐶)0; 𝑅),

where𝐶 varies over all compact subsets of 𝐵,3 are all isomorphisms.

Claim 3.33. Theorem 3.17 is true if 𝑅 is a field.

Proof. By Claim 3.27, for every compact 𝐶 ⊆ 𝐵, there is a unique class 𝑢𝐶 ∈ 𝐻𝑛(𝜋−1(𝐶), 𝜋−1(𝐶)0; 𝑅)
whose restriction to each fiber𝐹 gives the chosen generator. Now, take 𝑢 ∈ 𝐻𝑛(𝐸, 𝐸0; 𝑅) to be the unique
class that has image (𝑢𝐶)𝐶 compact under the fourth isomorphismofCorollary 3.32. This class is now easily
seen to be the only one that satisfies property (ii) of the Theorem.

By Proposition 1.53, we have commutative diagrams

𝐻𝑘(𝐸; 𝑅) 𝐻𝑘+𝑛(𝐸, 𝐸0; 𝑅)

𝐻𝑘(𝜋−1(𝐶); 𝑅) 𝐻𝑘+𝑛(𝜋−1(𝐶), 𝜋−1(𝐶)0; 𝑅)

𝑢`

𝑢𝐶`

for each compact𝐶 ⊆ 𝐵. Taking the inverse limit over all compact subsets𝐶 ⊆ 𝐵we get the commutative
diagram

𝐻𝑘(𝐸; 𝑅) 𝐻𝑘+𝑛(𝐸, 𝐸0; 𝑅)

lim⟵ 𝐻𝑘(𝜋−1(𝐶); 𝑅) lim⟵ 𝐻𝑘+𝑛(𝜋−1(𝐶), 𝜋−1(𝐶)0; 𝑅)

𝑢`

≅ ≅

∏𝐶(𝑢𝐶`)

in which the vertical arrows are isomorphisms by Corollary 3.32 and the bottom horizontal arrow is an
isomorphism by Claim 3.27. Therefore, the top arrow is an isomorphism as well. This finishes the proof
of the claim.

3the inclusion relation gives a directed set because the union of two compact subsets is again compact.
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Claim 3.34. If the existence condition of part (ii) of Theorem 3.17 is true for𝑅 = Z, then the whole theorem
is true for any commutative ring with unit 𝑅. Furthermore, the maps

𝐻𝑘+𝑛(𝐸, 𝐸0; 𝑅) → 𝐻𝑘(𝐸; 𝑅)
𝜂 ↦ 𝜂 a 𝑢

are isomorphisms for every integer 𝑘.

Proof. One can check that the diagrams

𝐶𝑛(𝐸, 𝐸0;Z) 𝐶𝑛(𝐸, 𝐸0; 𝑅)

𝐶𝑛(𝐹, 𝐹0;Z) 𝐶𝑛(𝐹, 𝐹0; 𝑅)

commute for each fiber 𝐹. Here, the vertical arrows are restrictions to fibers, the bottom horizontal map
is the one in Remark 3.16 and the top one is a similar one with the pair (𝐸, 𝐸0) instead of (𝐹, 𝐹0). Now
take a cocycle 𝜑 ∈ 𝐶𝑛(𝐸, 𝐸0;Z) representing the class 𝑢 ∈ 𝐻

𝑛(𝐸, 𝐸0;Z). Let 𝜑𝑅 be the image of 𝜑 under
the top arrow. Then, the commutativity of the diagrams makes sure that 𝑢𝑅 = [𝜑𝑅] ∈ 𝐻𝑛(𝐸, 𝐸0; 𝑅)
restricts to the desired 𝑅-orientation on each fiber. This shows the existence part of (ii) for arbitrary 𝑅.

Notice that the map

a 𝜑 ∶ 𝐶𝑘+𝑛(𝐸, 𝐸0;Z) → 𝐶𝑘(𝐸;Z)
𝑐 ↦ 𝑐 a 𝜑

is linear and satisfies 𝜕(𝑐 a 𝜑) = (−1)𝑛(𝜕𝑐 a 𝜑) (cf. Lemma 1.59). One can check that passing to chains
with coefficients in𝑅, themapa 𝜑 becomesa 𝜑𝑅 (in otherwords,a 𝜑 ⊗ id𝑅 =a 𝜑𝑅). Also, byRemark
1.61 the dual ofa 𝜑𝑅 is

𝜑𝑅 `∶ 𝐶𝑘(𝐸; 𝑅) → 𝐶𝑘+𝑛(𝐸, 𝐸0; 𝑅)
𝜓 ↦ 𝜑𝑅 ` 𝜓.

Passing to homology and cohomology, we got maps

a 𝑢𝑅 ∶ 𝐻𝑘+𝑛(𝐸, 𝐸0; 𝑅) → 𝐻𝑘(𝐸; 𝑅), 𝑢𝑅 `∶ 𝐻𝑘(𝐸; 𝑅) → 𝐻𝑘+𝑛(𝐸, 𝐸0; 𝑅).

Using uniqueness of the classes 𝑢𝑅 when𝑅 is a field (cf. Claim 3.33), we deduce that themap in cohomol-
ogy coincides with the one in part (iii) of the Theorem, which was already seen to be an isomorphism for
every field 𝑅 (again by Claim 3.33). Now we can use Lemma 3.24 to obtain that both maps are actually
isomorphisms for arbitrary 𝑅.

We still need to prove that the classes 𝑢𝑅 ∈ 𝐻𝑛(𝐸, 𝐸0; 𝑅) are unique. To do it, for every 𝑏 ∈ 𝐵,
consider the diagram

𝐻0(𝐵; 𝑅) 𝐻0(𝐸; 𝑅) 𝐻𝑛(𝐸, 𝐸0; 𝑅)

𝐻0({𝑏}; 𝑅) 𝐻0(𝐹𝑏; 𝑅) 𝐻𝑛(𝐹𝑏, 𝐹𝑏0; 𝑅)

𝛨0(𝜋) 𝑢𝑅`

𝛨0(𝜋|𝐹𝑏) 𝑢𝑅𝐹`

in which the vertical arrows are restrictions. The left square commutes because the corresponding square
at the level of topological spaces commutes. The right square commutes because of Proposition 1.53.
Now, assume that there is another class 𝑢𝑅 ∈ 𝐻𝑛(𝐸, 𝐸0; 𝑅) that also restricts to 𝑢

𝑅
𝐹𝑏
∈ 𝐻𝑛(𝐹𝑏, 𝐹𝑏0; 𝑅) for

every 𝑏 ∈ 𝐵. Recall that𝐻0(𝜋) is an isomorphism because 𝜋 ∶ 𝐸 → 𝐵 is a homotopy equivalence and
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that 𝑢𝑅 `was proven to be an isomorphism as well. Starting at the top right of the diagram with 𝑢𝑅, we
obtain

𝑧 𝑦 𝑢𝑅

𝑧(𝑏) 𝑧(𝑏) 𝑢𝐹 = 𝑧(𝑏)𝑢𝐹
Since we must have 𝑢𝐹 = 𝑧(𝑏)𝑢𝐹 for every 𝑏 ∈ 𝐵, the 0-cocycle 𝑧 ∶ 𝐵 → 𝑅 must be the constant map
1 ∈ 𝑅. Mapping this constant map under the top arrows gives 𝑢𝑅 = 𝑢𝑅 ` 1 = 𝑢𝑅, as wanted.

With this, we can finally give a general proof of Theorem 3.17.

Proof. (of Theorem 3.17) By Claim 3.27, for every compact𝐶 ⊆ 𝐵, there is a class

𝑢𝐶 ∈ 𝐻𝑛(𝜋−1(𝐶), 𝜋−1(𝐶)0;Z)

that restricts to the chosen Z-orientation on each fiber. By Claim 3.34,

𝐻𝑛−1(𝜋
−1(𝐶), 𝜋−1(𝐶)0;Z) ≅ 𝐻−1(𝜋

−1(𝐶);Z) = 0.

By Proposition 3.31(i), we have an isomorphism

𝐻𝑛−1(𝐸, 𝐸0;Z) ≅ lim⟶ 𝐻𝑛−1(𝜋
−1(𝐶), 𝜋−1(𝐶)0;Z) = 0.

Using these facts together with Proposition 3.31(ii), we have an isomorphism

𝜅 ∶ 𝐻𝑛(𝐸, 𝐸0;Z) → lim⟵ 𝐻𝑛(𝜋−1(𝐶), 𝜋−1(𝐶)0;Z)
𝑤 ↦ (𝑤|(𝜋−1(𝐶),𝜋−1(𝐶)0))𝐶.

Then, the class 𝑢 ∈ 𝐻𝑛(𝐸, 𝐸0;Z)whose image under 𝜅 is (𝑢𝐶)𝐶 restricts to the chosen Z-orientation and
Claim 3.34 finishes the job.

3.3 Chern classes

Here we introduce complex vector bundles and define Chern classes.

Definition 3.35. Let 𝐵 be a topological space. A complex vector bundle 𝜔 over 𝐵 consists of

(i) the given space 𝐵, which will be referred to as the base space,

(ii) a topological space 𝐸 = 𝐸(𝜔) called the total space,

(iii) a continuous map 𝜋 ∶ 𝐸 → 𝐵 called the projection map and

(iv) a complex vector space structure on the sets 𝜋−1(𝑏) for every 𝑏 ∈ 𝐵.

Furthermore, the condition of local triviality must be satisfied. Namely, every 𝑏 ∈ 𝐵 has a neighborhood
𝑈 ⊆ 𝐵, an integer 𝑛 ≥ 0 and a homeomorphism

ℎ ∶ 𝑈 ×R𝑛 → 𝜋−1(𝑈)

so that for every 𝑏 ∈ 𝑈, the map

ℎ𝑏 = ℎ(𝑏, r) ∶ R𝑛 → 𝜋−1(𝑏)

𝑥 ↦ ℎ(𝑏, 𝑥)

is a C-isomorphism. Such a pair (𝑈, ℎ) is called local coordinate system for 𝜔 about 𝑏. The vector space
𝜋−1(𝑏) is also denoted by𝐹𝑏(𝜔) (or simply𝐹𝑏) and is called fiber over 𝑏. If𝑈 can be chosen to be the entire
base space 𝐵, then 𝜔will be called a trivial bundle.
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Remark 3.36. Because of the local triviality property, 𝑛 is a locally constant function of 𝑏. For our
purposes, though, 𝑛will always be constant and its value will be specified by saying that 𝜔 is aC𝑛-bundle
over 𝐵.

Definition 3.37. If 𝜔 is aC𝑛-bundle over 𝐵, we can forget about the complex vector space structure to
obtain anR2𝑛-bundle over 𝐵, denoted 𝜔R.

This procedure of forgetting the complex structure yields a canonical preferred orientation on 𝜔R:

Proposition 3.38. Let 𝜔 be aC𝑛-bundle. Then, 𝜔R is canonically oriented.

Before giving a proof, recall that an orientation of an R𝑛-bundle is a choice of generators 𝑢𝐹 ∈
𝐻𝑛(𝐹, 𝐹0;Z) for each fiber 𝐹 subject to a local compatibility condition (cf. 3.14). Equivalently, one can
choose an orientation on each fiber given by an ordered basis and require 𝐵 to be covered by local coor-
dinate systems (𝑈, ℎ) such that ℎ(𝑏, r) ∶ R𝑛 → 𝐹𝑏 is an orientation preserving isomorphism for every
𝑏 ∈ 𝑈. This definition is more convenient to prove the proposition, so we will adopt it for a moment.

Proof. Let𝑉be an𝑛-dimensional complex vector space. Wedefine anorientationof𝑉 as a2𝑛-dimensional
real vector space as follows. Start by taking a C-basis {𝑎1, … , 𝑎𝑛} for 𝑉. Then, {𝑎1, 𝑖𝑎1, … , 𝑎𝑛, 𝑖𝑎𝑛} is an
orderedR-basis for𝑉 and we can consider the orientation of𝑉 induced by it. We claim that this is well-
defined. To prove it, assume we had taken another C-basis {𝑏1, … , 𝑏𝑛}. Since the linear group 𝐺𝐿(𝑛,C)
is path-connected as a topological space,4 there is a continuous path 𝑀 ∶ [0, 1] → 𝐺𝐿(𝑛,C) from
the identity to the matrix whose columns are the components of 𝑏1, … , 𝑏𝑛 with respect to the C-basis
{𝑎1, … , 𝑎𝑛}. For each 𝑡 ∈ [0, 1], let 𝑐1(𝑡), … , 𝑐𝑛(𝑡) be the columns of𝑀(𝑡). When considered as vectors
in theC-basis {𝑎1, … , 𝑎𝑛}, these form aC-basis {𝑐1(𝑡), … , 𝑐𝑛(𝑡)} for𝑉. For each 𝑡 ∈ [0, 1]we thus have an
R-basis {𝑐1(𝑡), 𝑖𝑐1(𝑡), … , 𝑐𝑛(𝑡), 𝑖𝑐𝑛(𝑡)}. Let𝑀R(𝑡) denote the matrix whose columns are the coordinates
of 𝑐1(𝑡), 𝑖𝑐1(𝑡), … , 𝑐𝑛(𝑡), 𝑖𝑐𝑛(𝑡) with respect to theR-basis {𝑎1, 𝑖𝑎1, … , 𝑎𝑛, 𝑖𝑎𝑛}. Since𝑀R(𝑡) is continu-
ous and det𝑀R(0) = 1, we must have det𝑀R(1) > 0, so the bases {𝑎1, … , 𝑎𝑛} and {𝑏1, … , 𝑏𝑛} induce
the same orientation.

Taking such orientation on each fiber, the compatibility condition is easily checked and the result
follows.

Lemma 3.39. (Gysin sequence) Let 𝜉 be an R𝑛-bundle with projection map 𝜋 ∶ 𝐸 → 𝐵 and denote
𝜋0 = 𝜋|𝛦0 ∶ 𝐸0 → 𝐵. Then, there is long exact sequence with integer coefficients

⋯ 𝐻𝑖(𝐵) 𝐻𝑖+𝑛(𝐵) 𝐻𝑖+𝑛(𝐸0) 𝐻𝑖+1(𝐵) ⋯𝑒(𝜉)` 𝛨𝑖+𝑛(𝜋0)

and will be referred to as Gysin sequence.

Proof. Consider the long exact sequence of the pair (𝐸, 𝐸0):

⋯ 𝐻𝑗(𝐸, 𝐸0) 𝐻𝑗(𝐸) 𝐻𝑗(𝐸0) 𝐻𝑗+1(𝐸, 𝐸0) ⋯ .

Using the isomorphisms𝐻𝑗−𝑛(𝐸)
𝑢`
⟶ 𝐻𝑗(𝐸, 𝐸0) (cf. Theorem 3.17), we can substitute𝐻𝑗(𝐸, 𝐸0) by

𝐻𝑗−𝑛(𝐸) to yield

⋯ 𝐻𝑗−𝑛(𝐸) 𝐻𝑗(𝐸) 𝐻𝑗(𝐸0) 𝐻𝑗−𝑛+1(𝐸) ⋯
𝑔

,

where 𝑔(𝑥) = (𝑢 ` 𝑥)|𝛦 = 𝑢|𝛦 ` 𝑥 for every 𝑥 ∈ 𝐻𝑗−𝑛(𝐸). Finally, substituting𝐻∗(𝐸) by𝐻∗(𝐵) (recall
that 𝜋 ∶ 𝐸 → 𝐵 is a homotopy equivalence), we obtain the desired sequence.

4for anymatrix𝛢 ∈ 𝐺𝐿(𝑛,C), det(𝑡 ⋅ id+(1−𝑡) ⋅𝛢) has, at most, 𝑛 complex roots in [0, 1]which are avoidable by slightly
changing the path.
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Definition 3.40. Let 𝜔 be a C𝑛-bundle 𝐸 𝜋→ 𝐵. We define the C𝑛−1-bundle 𝜔0 over 𝐸0 as follows.
Consider theC𝑛-bundle 𝜋∗0𝜔 over 𝐸0. Let 𝜂 be the sub-bundle of 𝜋

∗
0𝜔with total space

{(𝑢, 𝑣) ∈ 𝐸0 × 𝐸|𝜋0(𝑢) = 𝜋(𝑣), 𝑣 ∈ ⟨𝑢⟩}.

Finally, take 𝜔0 to be the quotient of 𝜋
∗
0𝜔 by 𝜂.

Now we can finally give a definition of the Chern classes.

Definition 3.41. The Chern classes 𝑐𝑖(𝜔) ∈ 𝐻
2𝑖(𝐵;Z) are defined by induction on 𝑖 as follows. We first

take the top Chern class 𝑐𝑛(𝜔) to be the Euler class 𝑒(𝜔R) ∈ 𝐻
2𝑛(𝐵;Z). Notice that since𝐻𝑗(𝐵;Z) = 0

for 𝑗 < 0, every map
𝐻2𝑖(𝜋0) ∶ 𝐻

2𝑖(𝐵;Z) → 𝐻2𝑖(𝐸0;Z)
in the Gysin sequence 3.39 is an isomorphism. For 𝑖 < 𝑛, we may then set 𝑐𝑖(𝜔) = 𝐻2𝑖(𝜋0)

−1(𝑐𝑖(𝜔0)).
For 𝑖 > 𝑛, we set 𝑐𝑖(𝜔) = 0. The total Chern class is defined as

𝑐(𝜔) = 1 + 𝑐1(𝜔) + … + 𝑐𝑛(𝜔) ∈ 𝐻
∏(𝐵;Z).

Furthermore, given a complex manifold𝑀, we write 𝑐(𝑀) and 𝑐𝑖(𝑀) to denote the Chern classes of its
tangent bundle equipped with the natural complex structure.

The following properties are analogous to Propositions 3.20-3.22.

Proposition 3.42. (Naturality) Let 𝜔, 𝜒 beC𝑛-bundles. If 𝑔 ∶ 𝐵(𝜔) → 𝐵(𝜒) is covered by a bundle map
𝜔 → 𝜒 that is complex linear in each fiber, then 𝑐𝑖(𝜔) = 𝐻2𝑖(𝑔)(𝑐𝑖(𝜒)) for every integer 𝑖. The total Chern
classes are related by 𝑐(𝜔) = 𝑔∗𝑐(𝜒), where we denote 𝑔∗ = 𝐻∗(𝑔).

Proposition 3.43. Let 𝜔 be aC𝑛-bundle and let 𝜖𝑘 be the trivialC𝑘-bundle over 𝐵(𝜔). Then 𝑐(𝜔⊕ 𝜖𝑘) =
𝑐(𝜔).

Proposition 3.44. (Whitney product formula) Let𝜔, 𝜒 be complex vector bundles over the same base space.
Then 𝑐(𝜔 ⊕ 𝜒) = 𝑐(𝜔)𝑐(𝜒).

As an example, we now compute the total Chern class of the complex projective space C𝑃𝑛. The
result is summarized in the following theorem.

Theorem 3.45. 𝑐(C𝑃𝑛) = (1 + 𝑎)𝑛+1, where 𝑎 is a generator of𝐻2(C𝑃𝑛;Z) ≅ Z.

Wewill need some definitions and computations first.

Definition 3.46. Let 𝜔 be a C𝑛-bundle. The conjugate bundle 𝜔 is the C𝑛-bundle with the same base
space, total space and projection map as 𝜔 but with conjugate complex structure on the fibers. Namely,

the action 𝜆 ⋅ 𝑒 on a fiber 𝐹(𝜔) is the action 𝜆 ⋅ 𝑒 on a fiber 𝐹(𝜔).

The Chern classes of a complex vector bundle and those of its conjugate are related as follows.

Lemma 3.47. 𝑐𝑖(𝜔) = (−1)𝑖𝑐𝑖(𝜔).

Proof. For each fiber 𝐹 of 𝜔, take a complex basis 𝑣1, … , 𝑣𝑛 ∈ 𝐹. Then, the real basis 𝑣1, 𝑖𝑣1, … , 𝑣𝑛, 𝑖𝑣𝑛
determines the preferred orientation of 𝐹 as a fiber of 𝜔R. Similarly, the real basis 𝑣1, −𝑖𝑣1, … , 𝑣𝑛, −𝑖𝑣𝑛
determines the preferred orientation of 𝐹 as a fiber of 𝜔R. Hence, 𝜔R and 𝜔R have the same orientation
if 𝑛 is even and the opposite one if 𝑛 is odd, so

𝑐𝑛(𝜔) = 𝑒(𝜔R) = (−1)𝑛𝑒(𝜔R) = (−1)𝑛𝑐𝑛(𝜔).

Now, assume the result is true for complex bundles of rank smaller than 𝑛. Then:

𝑐𝑖(𝜔) = 𝐻2𝑖(𝜋0)
−1𝑐𝑖((𝜔)0)

(∗)= 𝐻2𝑖(𝜋0)
−1𝑐𝑖(𝜔0)

(∗∗)= 𝐻2𝑖(𝜋0)
−1((−1)𝑖𝑐𝑖(𝜔0))

= (−1)𝑖𝐻2𝑖(𝜋0)
−1(𝑐𝑖(𝜔0)) = (−1)𝑖𝑐𝑖(𝜔).

At (∗)we have used that (𝜔)0 ≅ 𝜔0 under the identity, and (∗∗) holds by the induction hypothesis.
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Definition 3.48. The canonical complex line bundle 𝛾1 = 𝛾1(C𝑛+1) is the C1-bundle over C𝑃𝑛 with
total space

𝐸(𝛾1) = {(ℓ, 𝑣) ∈ C𝑃𝑛 × C𝑛+1 ∶ 𝑣 ∈ ℓ}
and obvious projection (ℓ, 𝑣) ↦ ℓ.

As a first step towards the proof of Theorem 3.45, we will show the following.

Claim 3.49. 𝑐(C𝑃𝑛) = (1 − 𝑐1(𝛾
1))𝑛+1

Proof. Let 𝜖𝑛+1 be the trivialC𝑛+1-bundle overC𝑃𝑛. We equip it with the standardHermitianmetric on
each fiber. Since 𝛾1 is a sub-bundle of 𝜖𝑛+1, we can consider the orthogonal complement5 𝜔𝑛 of 𝛾1 in 𝜖𝑛+1.
There is a natural identification of 𝜏(C𝑃𝑛), the tangent bundle of C𝑃𝑛, with HomC(𝛾

1, 𝜔𝑛). Indeed,
the projection C𝑛+1 ∖ {0}

𝑝
→ C𝑃𝑛 is a submersion with ker(𝑑𝑧𝑝) = ⟨𝑧⟩. Choosing 𝑧 ∈ C𝑛+1 such that

𝑝(𝑧) = ℓ, this allows us to identify𝑇ℓ(C𝑃
𝑛)withC𝑛+1/ℓ ≅ ℓ⟂ under the isomorphism𝜑𝑧 ∶ ℓ

⟂ → 𝑇ℓ(C𝑃
𝑛)

induced by 𝑑𝑧𝑝. Of course, this identification depends on the choice of 𝑧 ∈ C𝑛+1, so it is certainly not
natural yet. To drop such dependence, we identify each vector 𝜈 ∈ 𝑇ℓ(C𝑃

𝑛)with the linear map

ℓ → ℓ⟂

𝑧 ↦ (𝜑𝑧)
−1(𝜈)

Since every step of this identification can be locally written in terms of complex analytic functions, it de-
fines a continuous function between the total spaces of 𝜏(C𝑃𝑛) andHomC(𝛾

1, 𝜔𝑛). As the restriction of
this function to eachfiber is an isomorphism,wehave thedesired isomorphism𝜏(C𝑃𝑛) ≅ HomC(𝛾

1, 𝜔𝑛).
Adding the trivial line bundle 𝜖1 ≅ HomC(𝛾

1, 𝛾1) overC𝑃𝑛 to each side, we obtain:

𝜏(C𝑃𝑛) ⊕ 𝜖1 ≅ HomC(𝛾
1, 𝜔𝑛) ⊕HomC(𝛾

1, 𝛾1) ≅ HomC(𝛾
1, 𝜔𝑛 ⊕ 𝛾1)

≅ HomC(𝛾
1, 𝜖𝑛+1) ≅ HomC(𝛾

1, 𝜖1⊕ (𝑛+1)… ⊕𝜖1)
≅ HomC(𝛾

1, 𝜖1)⊕ (𝑛+1)… ⊕HomC(𝛾
1, 𝜖1) ≅ 𝛾1⊕ (𝑛+1)… ⊕𝛾1.

The last isomorphism above is given by taking each 𝑣 ∈ 𝐹(𝛾1) to ⟨ r, 𝑣⟩ ∈ HomC(𝐹(𝛾
1),C), where ⟨ r, r⟩

denotes the Hermitian metric onC𝑛+1. To finish the proof of the claim, we use Propositions 3.43, 3.44
and Lemma 3.47.

𝑐(C𝑃𝑛) = 𝑐(𝜏(C𝑃𝑛) ⊕ 𝜖1) = 𝑐(𝛾1⊕ (𝑛+1)… ⊕𝛾1) = (1 − 𝑐1(𝛾
1))𝑛+1.

Nowwe can finish the computation of the total Chern class ofC𝑃𝑛.

Proof. (of Theorem 3.45) It suffices to show that 𝑐1(𝛾
1) is a generator of𝐻2(C𝑃𝑛;Z). Lemma 3.39 gives

the Gysin sequence associated to 𝛾1 (integer coefficients are understood):

⋯ 𝐻𝑖+1(𝐸0) 𝐻𝑖(C𝑃𝑛) 𝐻𝑖+2(C𝑃𝑛) 𝐻𝑖+2(𝐸0) ⋯
𝑐1(𝛾

1)`

Notice that 𝐸0 can be homeomorphically identified withC𝑛+1 ∖ {0}, which is homotopically equivalent
to 𝕊2𝑛+1. The Gysin sequence thus reduces to

0 𝐻𝑖(C𝑃𝑛) 𝐻𝑖+2(C𝑃𝑛) 0
𝑐1(𝛾

1)`

for every integer 0 ≤ 𝑖 ≤ 2𝑛 − 2. We thus have isomorphisms

𝐻0(C𝑃𝑛) ≅ 𝐻2(C𝑃𝑛) ≅ … ≅ 𝐻2𝑛(C𝑃𝑛)

under the cup product by 𝑐1(𝛾
1). Since C𝑃𝑛 is path-connected, all of these groups are isomorphic to Z

and the result follows.
5Although this was defined for real vector bundles in 3.12, it analogously applies to complex ones.
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Remark 3.50. The Gysin sequence also gives isomorphisms

0 ≅ 𝐻1(C𝑃𝑛) ≅ 𝐻3(C𝑃𝑛) ≅ … ≅ 𝐻2𝑛−1(C𝑃𝑛).

Inparticular,wehave alsoproved that the cohomology ring𝐻∗(C𝑃𝑛;Z) is generatedby 𝑐1(𝛾
1) ∈ 𝐻2(C𝑃𝑛;Z)

and is isomorphic to Z[𝑥]/(𝑥𝑛+1), where 𝑥 is identified with 𝑐1(𝛾
1).

3.4 Pontrjagin classes

Before we state the definition of Pontrjagin classes, we give some preliminary results.

Definition 3.51. Given an𝑛-dimensional real vector space𝑉, we can consider its complexification𝑉 ⊗R C,
an 𝑛-dimensional complex vector space. Applying this to every fiber of an R𝑛-bundle 𝜉, we obtain a
canonicalC𝑛-bundle 𝜉 ⊗ C called the complexification of 𝜉.

Lemma 3.52. For everyR𝑛-bundle 𝜉, theC𝑛-bundles 𝜉 ⊗ C and 𝜉 ⊗ C are isomorphic.

Proof. Themap 𝑥 + 𝑖𝑦 ↦ 𝑥 − 𝑖𝑦 is a homeomorphism from 𝐸(𝜉 ⊗C) onto 𝐸(𝜉 ⊗ C) and isC-linear in
each fiber.

Definition 3.53. The 𝑖th Pontrjagin class 𝑝𝑖(𝜉) ∈ 𝐻
4𝑖(𝐵;Z) is defined to be (−1)𝑖𝑐2𝑖(𝜉⊗C). The total

Pontrjagin class is defined as

𝑝(𝜉) = 1 + 𝑝1(𝜉) + 𝑝2(𝜉) + … ∈ 𝐻∏(𝐵;Z).

For a smooth manifold𝑀, we denote the Pontrjagin classes of its tangent bundle by 𝑝𝑖(𝑀) and 𝑝(𝑀).

Remark 3.54. Odd Chern classes are ignored as they have order 2. This is an immediate consequence
of Lemmas 3.47 and 3.52.

Just as in the previous sections, Pontrjagin classes satisfy the following typical properties.

Proposition 3.55. (Naturality) Let 𝜉, 𝜂 beR𝑛- bundles. If 𝑔 ∶ 𝐵(𝜉) → 𝐵(𝜂) is covered by a bundle map
𝜉 → 𝜂, then 𝑝𝑖(𝜉) = 𝐻4𝑖(𝑔)(𝑝𝑖(𝜂)) for every integer 𝑖. In terms of total Pontrjagin classes, 𝑝(𝜉) = 𝑔∗𝑝(𝜂).

Proposition 3.56. Let𝜉 be aR𝑛-bundle and 𝜖𝑘 be the trivialR𝑘-bundle over𝐵(𝜉). Then𝑝(𝜉⊕𝜖𝑘) = 𝑝(𝜉).

Proposition 3.57. (Whitney product formula) Let 𝜉, 𝜂 be vector bundles over the same base space. Then
2𝑝(𝜉 ⊕ 𝜂) = 2𝑝(𝜉)𝑝(𝜂).

As an example, we now compute the total Pontrjagin class of the complex projective space C𝑃𝑛. As
with Chern classes, we can summarize the result in the following theorem.

Theorem 3.58. 𝑝(C𝑃𝑛) = (1 + 𝑎2)𝑛+1, where 𝑎 is any generator of𝐻2(C𝑃2,Z) ≅ Z.

This will easily follow from two results below.

Lemma 3.59. For anyC𝑛-bundle 𝜔, there is an isomorphism 𝜔R ⊗ C ≅ 𝜔 ⊕ 𝜔.

Proof. The endofunctors of the category of finite dimensional complex vector spaces𝑉 ↦ 𝑉R ⊗ C and
𝑉 ↦ 𝑉 ⊕ 𝑉 are naturally isomorphic under the map

𝑉R ⊗ C → 𝑉⊕ 𝑉
𝑣 ⊗ 𝑧 ↦ (𝑧 ⋅ 𝑣, 𝑧 ⋅ 𝑣) = (𝑧𝑣, 𝑧𝑣).

Since naturally isomorphic functors induce isomorphic bundles, the claim follows.
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This has an immediate consequence on Pontrjagin classes.

Corollary 3.60. Let 𝜔 be a C𝑛-bundle. Denote 𝑐𝑖 = 𝑐𝑖(𝜔) and 𝑝𝑖 = 𝑝𝑖(𝜔R). These are related by the
formula

𝑛
∑
𝑖=0

(−1)𝑖𝑝𝑖 = (
𝑛
∑
𝑖=0

(−1)𝑖𝑐𝑖) (
𝑛
∑
𝑖=0

𝑐𝑖) .

We are now ready to finish the computation of 𝑝(C𝑃𝑛).

Proof. (of Theorem 3.58) Denote 𝑝𝑖 = 𝑝𝑖(C𝑃
𝑛) = 𝑝𝑖(𝜏(C𝑃

𝑛)R) and 𝑐𝑖 = 𝑐𝑖(C𝑃
𝑛). By the corollary and

Theorem 3.45, we have

𝑛
∑
𝑖=0

(−1)𝑖𝑝𝑖 = (1 − 𝑎)𝑛+1(1 + 𝑎)𝑛+1 = (1 − 𝑎2)𝑛+1

Thus, 𝑝(C𝑃𝑛) =
𝑛
∑
𝑖=0

𝑝𝑖 = (1 + 𝑎2)𝑛+1.

Another relevant computation that we will use later on is that of the Pontrjagin classes of the quater-
nionic projective spaceH𝑃𝑛. This was first done in [Hir53] and what follows is a slight remake of this
work.

Theorem 3.61. 𝑝(H𝑃𝑛) = (1 + 𝑢)2𝑛+2(1 + 4𝑢)−1, where 𝑢 is a generator of𝐻4(H𝑃𝑛;Z) ≅ Z.

Proof. Consider the smooth map

C𝑃2𝑛+1 H𝑃𝑛

[𝑧1 ∶ 𝑧2 ∶ … ∶ 𝑧2𝑛+2] [𝑧1 + 𝑧2𝑗 ∶ … ∶ 𝑧2𝑛+1 + 𝑧2𝑛+2𝑗].

𝜋

The fibers 𝜋−1(𝜋[𝑧1 ∶ … ∶ 𝑧2𝑛+2]) are the complex projective lines

{[𝑎(𝑧1, … , 𝑧2𝑛+2) + 𝑏(−𝑧2, 𝑧1, … , −𝑧2𝑛+2, 𝑧2𝑛+1)] ∶ 𝑎, 𝑏 ∈ C} ≅ C𝑃1 ≅ 𝕊2.

Fix a Riemannian metric on C𝑃2𝑛+1. By Remark 3.13, we can write the tangent bundle 𝜏(C𝑃2𝑛+1) as
a Whitney sum 𝜏1 ⊕ 𝜏2, where 𝜏1 and 𝜏2 are the sub-bundles of 𝜏(C𝑃

2𝑛+1) consisting of vectors tangent
and normal to the fiber C𝑃1, respectively. 𝜏1 is actually independent of the choice of the Riemannian
metric and inherits a complex vector bundle structure with complex fiber dimension 1. We want now to
compute 𝑝(𝜏1). To do this, it suffices to obtain 𝑐(𝜏1) and use Corollary 3.60.

Fix a fiber ℓ of 𝜋 ∶ C𝑃2𝑛+1 → H𝑃𝑛. Wemay consider the restriction 𝜏ℓ of 𝜏1 to the fiber ℓ. Of course,
𝜏ℓ is just the tangent bundle 𝜏(ℓ). Since ℓ ≅ C𝑃1, Theorem 3.45 and naturality imply 𝑐1(𝜏ℓ) = 2𝑎ℓ, where
𝑎ℓ ∈ 𝐻

2(ℓ;Z) is a generator. Consider now the inclusion bundle map 𝜏ℓ → 𝜏1. Again by naturality, we
have 𝑐1(𝜏ℓ) = 2𝑎ℓ = 𝑖∗(𝑐1(𝜏1)), where 𝑖 ∶ C𝑃

1 ↪ C𝑃2𝑛+1 is the inclusion. But

𝑖∗ ∶ 𝐻2(C𝑃2𝑛+1;Z) → 𝐻2(C𝑃1;Z)

is an isomorphism6, so 𝑐1(𝜏1) = 2𝑔, where 𝑔 is a generator of 𝐻2(C𝑃2𝑛+1;Z). The total Chern class is
then 𝑐1(𝜏1) = 1 + 2𝑔. By Corollary 3.60, we have computed 𝑝(𝜏1) = 1 + 4𝑔2.

Since 𝜋 ∶ C𝑃2𝑛+1 → H𝑃𝑛 is a fiber bundle, it is a submersion. By the regular value theorem, its
differential 𝑑𝜋 sends each vector of 𝜏1 to zero. Hence, 𝑑𝜋 restricted to the fibers of 𝜏2 is an isomorphism,
so it defines a bundle map 𝜏2 → 𝜏(H𝑃𝑛). By naturality, 𝑝(𝜏2) = 𝜋∗𝑝(H𝑃𝑛). On the other hand, since all
cohomology groups are free, Proposition 3.57 implies

𝑝(C𝑃𝑛) = 𝑝(𝜏1)𝑝(𝜏2).
6This can easily be seen regarding complex projective spaces as CW complexes. See, for instance, Lemma 2.34 in [Hat01].
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Substituting what we have so far, gets us to

𝜋∗𝑝(H𝑃𝑛) = (1 + 𝑔2)2𝑛+2(1 + 4𝑔2)−1.

To finish the proof, it suffices to show that 𝜋∗ ∶ 𝐻4𝑖(H𝑃𝑛;Z) → 𝐻4𝑖(C𝑃2𝑛+1;Z) are isomorphisms, so
that we can set 𝜋∗𝑢 = 𝑔2 and cancel out the 𝜋∗’s in the previous equation. As a first step towards this
claim, it is a standard computation in algebraic topology that the cohomology groups𝐻𝑚(H𝑃𝑛;Z) are
all zero except for𝐻4𝑖(H𝑃𝑛;Z) ≅ Z for 0 ≤ 𝑖 ≤ 𝑛.7

Notice also that it only suffices to prove that𝐻4(𝜋) ∶ 𝐻4(H𝑃𝑛;Z) → 𝐻4(C𝑃2𝑛+1;Z) is an isomor-
phism. Indeed, in this casewe can already set𝜋∗𝑢 = 𝑔2 andbyProposition1.53, each𝑢𝑖 ∈ 𝐻4𝑖(H𝑃𝑛;Z) ≅
Z is sent to the generator 𝑔2𝑖 ∈ 𝐻4𝑖(C𝑃2𝑛+1;Z) ≅ Z. It follows that the homomorphisms𝐻4𝑖(𝜋) are all
surjective, thus isomorphisms.

A further reduction we can do is to consider the commutative diagram

𝐻4(H𝑃𝑛;Z) 𝐻4(C𝑃2𝑛+1,Z)

𝐻4(H𝑃1;Z) 𝐻4(C𝑃2,Z).

𝜋∗

(𝜋|C𝛲2)
∗

The vertical arrows are isomorphisms,8 so it is enough to prove that the horizontal bottom arrow is an
isomorphism as well. But this is now fairly simple in the cellular (co)homology setting, as 𝜋|C𝛲2 sends the
4-cell ofC𝑃2 to the 4-cell ofH𝑃1. This concludes the proof of the theorem.

3.5 The Hirzebruch signature theorem

The aim of this section is to state and sketch a proof of the Hirzebruch signature theorem, as it is a
fundamental ingredient in Milnor’s argument of existence of exotic smooth spheres, which is presented
in the next chapter. Unfortunately, the proof we sketch here heavily relies on a theorem of cobordism
theory (namely, Theorem 3.63), which will be stated, but not proved.

The oriented cobordism ringΩ∗

The following material is mostly due to Thom in [Tho54], but it is taken from [MS74]. For an oriented
smooth manifold𝑀, we denote the same manifold with the opposite orientation by −𝑀. We also use
the symbol + to denote disjoint union.

Definition 3.62. Two smooth, compact, oriented 𝑚-dimensional manifolds 𝑀 and 𝑁 are oriented
cobordant if there is a smooth compact oriented manifold with boundary 𝐵 so that 𝜕𝐵 (with its induced
orientation) is diffeomorphic to𝑀+ (−𝑁) under an orientation preserving diffeomorphism.

This can be shown to be an equivalence relation. Reflexive and symmetry properties are straight-
forward and the transitive one follows by taking collar neighborhoods (cf. Theorem 1.33) and gluing
through the boundaries. WewriteΩ𝑚 to denote the set of all oriented cobordism classes (i.e. equivalence
classes under the previous relation). This is already an abelian group, but we further have well-defined
associative bilinear products

Ω𝑛 × Ω𝑚 → Ω𝑛+𝑚

induced by taking the Cartesian product of manifolds. Hence, we have equipped Ω∗ = ⨁
𝑖≥0

Ω𝑖 with a

structure of graded ring.

7Again, the easiest way to check this is to regardH𝛲𝑛 as a CWcomplex and to use cellular (co)homology. See, for instance,
page 140 in [Hat01].

8This follows again by Lemma 2.34 in [Hat01].
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Theorem 3.63. The tensor productΩ∗ ⊗ Q is a polynomial algebra overQ with independent generators
C𝑃2,C𝑃4,C𝑃6, … .

For a proof, one can see chapter 18 in [MS74] or [Sto68].

Pontrjagin numbers

Definition 3.64. Let𝑀 be a smooth, compact, oriented 4𝑛-manifold and let 𝐼 = 𝑖1, … , 𝑖𝑟 be a partition
of 𝑛. The 𝐼th Pontrjagin number is the integer

𝑝𝛪[𝑀] = 𝑝𝑖1 ⋯𝑝𝑖𝑟[𝑀] = ⟨𝑝𝑖1(𝑀)⋯ 𝑝𝑖𝑟(𝑀), [𝑀]⟩,

where [𝑀] ∈ 𝐻4𝑛(𝑀;Z) is the fundamental class of𝑀with integer coefficients.

Pontrjaginnumbers provide anecessary condition for a compact, oriented4𝑛-manifold tobe abound-
ary. Namely, we have the following.

Lemma 3.65. For any smooth, compact, oriented (4𝑛 + 1)-manifold with boundary 𝐵, all Pontrjagin
numbers 𝑝𝛪[𝜕𝐵] are zero.

Proof. Write𝑀 = 𝜕𝐵. As usual, denote the fundamental classes for𝐵 and𝑀 by [𝐵,𝑀] ∈ 𝐻4𝑛+1(𝐵,𝑀)
and [𝑀] ∈ 𝐻4𝑛(𝑀), respectively (integer coefficients are to be understood throughout the proof). Let
𝜕 ∶ 𝐻4𝑛+1(𝐵,𝑀) → 𝐻4𝑛(𝑀) and 𝛿 ∶ 𝐻4𝑛(𝑀) → 𝐻4𝑛+1(𝐵,𝑀) be the connecting homomorphisms of
the long exact sequences in homology and cohomology of the pair (𝐵,𝑀). Tracing back the definitions
of these homomorphisms, it is easy to check that

⟨𝑢, [𝑀]⟩ = ⟨𝛿𝑢, [𝐵,𝑀]⟩.

Consider the tangent bundles 𝜏(𝐵) and 𝜏(𝑀). Taking a collar neighborhood of 𝑀 in 𝐵 allows us to
write

𝜏(𝐵)|𝛭 ≅ 𝜏(𝑀) ⊕ 𝜖1.

This and naturality imply 𝑖∗𝑝(𝐵) = 𝑝(𝜏(𝐵)|𝛭) = 𝑝(𝑀). The portion of the long exact sequence of the
pair (𝐵,𝑀)

𝐻4𝑛(𝐵) 𝐻4𝑛(𝑀) 𝐻4𝑛+1(𝐵,𝑀)𝑖∗ 𝛿

asserts that
𝛿(𝑝𝑖1(𝑀)⋯ 𝑝𝑖𝑟(𝑀)) = (𝛿𝑖∗)(𝑝𝑖1(𝐵) ⋯ 𝑝𝑖𝑟(𝐵)) = 0

for any partition 𝐼 = 𝑖1, … , 𝑖𝑟 of 𝑛. Hence,

𝑝𝛪[𝑀] = ⟨𝑝𝑖1(𝑀)⋯ 𝑝𝑖𝑟(𝑀), [𝑀]⟩ = ⟨𝛿(𝑝𝑖1(𝑀)⋯ 𝑝𝑖𝑟(𝑀)), [𝐵,𝑀]⟩ = 0.

As a corollary, we have:

Corollary 3.66. Any partition 𝐼 = 𝑖1, … , 𝑖𝑟 of 𝑛 provides a group homomorphism

Ω4𝑛 → Z

𝑀↦ 𝑝𝛪[𝑀].

Proof. It suffices to prove 𝑝𝛪[𝑀 + 𝑁] = 𝑝𝛪[𝑀] + 𝑝𝛪[𝑁] for arbitrary smooth, compact, oriented 4𝑛-
manifolds𝑀 and𝑁. But this is an easy consequence of the naturality of the Pontrjagin classes under the
inclusions𝑀↪ 𝑀+𝑁 and𝑁↪ 𝑀+𝑁.
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Multiplicative sequences

Let 𝐴∗ = ⨁
𝑖≥0

𝐴𝑖 be a commutative graded Q-algebra with unit. We denote the commutative ring con-

sisting of formal sums 𝑎0 + 𝑎1 + … with 𝑎𝑖 ∈ 𝐴𝑖 by𝐴
∏. Throughout this section, assign degree 𝑖 to the

indeterminate 𝑥𝑖 and consider polynomials

𝐾1(𝑥1), 𝐾2(𝑥1, 𝑥2), … ,𝐾𝑛(𝑥1, … , 𝑥𝑛), …

with coefficients inQ such that each𝐾𝑛 is homogeneous of degree 𝑛. For anyQ-algebra𝐴∗ as above, and

any 𝑎 = 1+𝑎1 +𝑎2 +… ∈ 𝐴∏, we denote𝐾(𝑎) = 1+𝐾(𝑎1)+𝐾2(𝑎1, 𝑎2)+…+𝐾𝑛(𝑎1, … , 𝑎𝑛)+… ∈ 𝐴∏.

Definition 3.67. The sequence of polynomials {𝐾𝑛} is said to be a multiplicative sequence if for any

Q-algebra𝐴∗ as above, we have𝐾(𝑎𝑏) = 𝐾(𝑎)𝐾(𝑏) for every 𝑎, 𝑏 ∈ 𝐴∏ with leading term 1.

Multiplicative sequences are easily classified by the following result.

Lemma 3.68. (Hirzebruch) Let 𝑓(𝑡) = 1 + 𝜆1𝑡 + 𝜆2𝑡
2 + … be a formal power series with coefficients inQ.

Then, there is one and only one multiplicative sequence {𝐾𝑛} satisfying𝐾(1 + 𝑡) = 𝑓(𝑡) for theQ-algebra
Q[𝑡]. This sequence will be referred to as the multiplicative sequence belonging to the power series 𝑓(𝑡).

For a proof of this lemma, see chapter 19 in [MS74].

Definition 3.69. Let𝑀 be a smooth, compact, oriented𝑚-manifold. The𝐾-genus𝐾[𝑀] is defined to
be zero if𝑚 is not divisible by 4 and to be

⟨𝐾𝑛(𝑝1, … , 𝑝𝑛), [𝑀]⟩ ∈ Q

if𝑚 = 4𝑛, where 𝑝𝑖 = 𝑝𝑖(𝑀).

Lemma 3.70. Any multiplicative sequence {𝐾𝑛} gives rise to a ring homomorphism

Ω∗ → Q

𝑀↦ 𝐾[𝑀].

Hence, it also gives rise to an algebra homomorphismΩ∗ ⊗Q → Q.

Proof. Since 𝐾[𝑀] is a rational linear combination of Pontrjagin numbers, Corollary 3.66 makes sure
that the map is well-defined and additive. Multiplicativity is proved by using the isomorphism

𝜏(𝑀1 ×𝑀2) ≅ 𝜋∗1𝜏(𝑀1) ⊕ 𝜋∗2𝜏(𝑀2),

the Whitney product formula, naturality and the multiplicativity of {𝐾𝑛}.

The signature of a manifold

We now define the signature of a smooth, compact and oriented manifold, prove some properties about
it and state the Hirzebruch signature theorem.

Definition 3.71. Let𝑀 be a smooth, compact, oriented 𝑚-manifold. The signature 𝜎(𝑀) is defined
to be zero if𝑚 is not divisible by 4 and to be as follows if𝑚 = 4𝑛: regard the fundamental class [𝑀] as an
element of the rational homology𝐻4𝑛(𝑀;Q). Take a basis 𝑎1, … , 𝑎𝑟 ∈ 𝐻

2𝑛(𝑀;Q) so that the symmetric
matrix

(⟨𝑎𝑖 ` 𝑎𝑗, [𝑀]⟩)
𝑖𝑗

is diagonal.9 The signature 𝜎(𝑀) is then the number of positive entries minus the number of negative
ones.

9This can be done, as the cup product pairing𝛨2𝑛(𝛭;Q) × 𝛨2𝑛(𝛭;Q) → Q is symmetric bilinear and we are working
over the fieldQ.
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Lemma 3.72. The signature satisfies the following properties:

(i) 𝜎(𝑀) = 0 if𝑀 is the boundary of a compact, oriented manifold,

(ii) 𝜎(𝑀 +𝑁) = 𝜎(𝑀) + 𝜎(𝑁),

(iii) 𝜎(𝑀 × 𝑁) = 𝜎(𝑀)𝜎(𝑁).

As a consequence, the signature defines a ring homomorphism Ω∗ → Z and an algebra homomorphism
Ω∗ ⊗Q → Q.

Property (ii) is straightforward. For properties (i) and (iii), see Theorem 8.2.1 in [Hir78].

Theorem 3.73. (Hirzebruch signature theorem) Let {𝐿𝑛} be the multiplicative sequence belonging to the
power series

√𝑡
tanh √𝑡 = 1 + 1

3𝑡 −
1
45𝑡

2 + … .

Then, the signature of any smooth, compact and oriented manifold is equal to its 𝐿-genus.

Proof. By lemmas 3.70, 3.72, and Theorem 3.63, it suffices to prove the equality 𝜎(𝑀) = 𝐿[𝑀] for
𝑀 = C𝑃2𝑛. We start by computing the signature ofC𝑃2𝑛. Let 𝑎 be a generator of𝐻2(C𝑃2𝑛;Z). Recall
that by provingTheorem3.45, we also showed that𝐻2𝑖(C𝑃2𝑛;Z) is generated by 𝑎𝑛 for every 0 ≤ 𝑖 ≤ 2𝑛.
Thus, {𝑎𝑛} is a basis of𝐻2𝑛(C𝑃2𝑛;Q) and the signature 𝜎(C𝑃2𝑛) equals ⟨𝑎2𝑛, [C𝑃2𝑛]⟩.

We now compute𝐿[C𝑃2𝑛]. Recall thatTheorem3.58 gave us𝑝 = 𝑝(C𝑃2𝑛) = (1+𝑎2)2𝑛+1. It follows
that

𝐿(𝑝) = 𝐿(1 + 𝑎2)2𝑛+1 = ( 𝑎
tanh 𝑎)

2𝑛+1
.

The 𝐿-genus 𝐿[C𝑃2𝑛] = ⟨𝐿𝑛(𝑝1, … , 𝑝𝑛), [C𝑃
2𝑛]⟩ is thus equal to ⟨𝑎2𝑛, [C𝑃2𝑛]⟩ times the coefficient of

𝑧2𝑛 in the power series of ( 𝑧
tanh 𝑧)

2𝑛+1
. To finish the proof, it then suffices to see that this coefficient is

1. This is purely a problem of complex analysis. Notice that the wanted coefficient is the residue of the

function ( 1
tanh 𝑧)

2𝑛+1
. We have

1
2𝜋𝑖 ∮

𝑑𝑧
(tanh 𝑧)2𝑛+1

= 1
2𝜋𝑖 ∮

(1 + 𝑤2 + 𝑤4 + …)𝑑𝑤
𝑤2𝑛+1 = 1

2𝜋𝑖 ∮
𝑑𝑤
𝑤 = 1,

where the first integral is through a small enough circle around the origin and in the first equality we have

performed the change 𝑤 = tanh 𝑧, 𝑑𝑧 = 𝑑𝑤
1−𝑤2 = 1 + 𝑤2 + 𝑤4 + … . The second and third equalities are

consequences of the residue theorem.



Chapter 4

Proof of the main theorem

This chapter replicates Milnor’s transcendental paper OnManifolds Homeomorphic to the 7-Sphere
([Mil56]). The aim of what follows is then to prove the existence of exotic 7-spheres. Namely, we will
show the following result.

Theorem 4.1. For 𝑘2 ≢ 1 (mod 7), the manifold𝑀7
𝑘 constructed in Section 2.2 is homeomorphic to 𝕊7 but

not diffeomorphic to 𝕊7.

The homeomorphic to 𝕊7 part was already proven in the same Section 2.2 usingMorse theory, so here
we only deal with the not diffeomorphic to 𝕊7 part.

The general idea of the argument is fairly simple. In Section 4.1, wedefine a diffeomorphism invariant
𝜆(𝑀) on certain smooth 7-manifolds𝑀. In Section 4.2, we compute this invariant for themanifolds𝑀7

𝑘
and see that it equals 𝑘2 − 1 (mod 7). Since for the standard 7-sphere the invariant will be zero, this will
conclude the proof.

4.1 The invariant 𝜆(𝑀)
Definition 4.2. Let𝑀 be a smooth, compact, oriented 7-manifold such that

(i) it is the boundary of a smooth, compact, oriented 8-manifold with boundary 𝐵,1 and

(ii) 𝐻3(𝑀) = 𝐻4(𝑀) = 0.2

Write 𝜎(𝐵) to denote the signature of the symmetric bilinear form

𝐻4(𝐵,𝑀;Q) × 𝐻4(𝐵,𝑀;Q) Q

(𝑎, 𝑏) ⟨𝑎 ` 𝑏, [𝐵,𝑀]⟩

that is, the number of positive entries minus the number of negative ones when diagonalized (compare
with Definition 3.71).

Because of the following portion of the long exact sequence of the pair (𝐵,𝑀)

0 𝐻4(𝐵,𝑀) 𝐻4(𝐵) 0,𝑖∗

the map 𝑖∗ is an isomorphism. Let 𝑝1 = 𝑝1(𝐵) ∈ 𝐻
4(𝐵) and

𝑞(𝐵) = ⟨((𝑖∗)−1𝑝1)
2, [𝐵,𝑀]⟩.

The invariant 𝜆(𝑀) is then defined to be 2𝑞(𝐵) − 𝜎(𝐵) (mod 7).

1Actually, this always holds, as the oriented cobordism groupΩ7 is trivial (see [Tho54]).
2Integer coefficients are to be understood throughout the whole chapter unless otherwise specified.
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Of course, it is not clear that this definition is independent of the choice of themanifoldwith bound-
ary 𝐵, so we should check that this is indeed the case.

Lemma 4.3. 𝜆(𝑀) is well-defined.

Proof. Let𝐵1 and𝐵2 be smooth, compact, oriented 8-manifolds with boundary𝑀. Consider the closed
8-manifold 𝐶 obtained by gluing 𝐵1 and 𝐵2 along their common boundary 𝑀. This is easily proven
to have an orientable smooth structure compatible with that of 𝐵1 and 𝐵2 by using of smooth collar
neighborhoods (see Theorem 1.33). Take the fundamental class [𝐶] ∈ 𝐻8(𝐶) that corresponds to the
pair ([𝐵1,𝑀], −[𝐵2,𝑀]) ∈ 𝐻8(𝐵1,𝑀) ⊕ 𝐻8(𝐵2,𝑀) under the diagram

𝐻7(𝑀)

0 𝐻8(𝐵1,𝑀) ⊕ 𝐻8(𝐵2,𝑀) 𝐻8(𝐶,𝑀) 0

𝐻8(𝐶)

0

ℎ∗

𝑗∗

where the horizontal and vertical sequences come from Mayer-Vietoris and the sequence of the pair
(𝐶,𝑀), respectively. Write 𝑞(𝐶) = ⟨𝑝21(𝐶), [𝐶]⟩. Since 𝐿2(𝑥1, 𝑥2) = 1

45(7𝑥2 − 𝑥21 ), the Hirzebruch
signature theorem gives

𝜎(𝐶) = ⟨ 145(7𝑝2(𝐶) − 𝑝
2
1(𝐶)), [𝐶]⟩ ∈ Z.

Taking integers mod 7, this yields

2𝑞(𝐶) − 𝜎(𝐶) ≡ 0 (mod 7)

To finish the proof, it suffices to show

𝜎(𝐶) = 𝜎(𝐵1) − 𝜎(𝐵2), (4.1)

𝑞(𝐶) = 𝑞(𝐵1) − 𝑞(𝐵2), (4.2)

as combining the last three equations leads to 2𝑞(𝐵1) − 𝜎(𝐵1) ≡ 2𝑞(𝐵2) − 𝜎(𝐵2) (mod 7).
Consider the diagram

0 𝐻𝑛(𝐵1,𝑀) ⊕ 𝐻𝑛(𝐵2,𝑀) 𝐻𝑛(𝐶,𝑀) 0

0 𝐻𝑛(𝐵1) ⊕ 𝐻𝑛(𝐵2) 𝐻𝑛(𝐶) 0

𝑖∗1⊕𝑖
∗
2

ℎ∗

𝑗∗

𝑠

where, as before, the horizontal sequences come from Mayer-Vietoris and the vertical ones are por-
tions of the long exact sequences of certain pairs. Notice that since𝐻3(𝑀) = 𝐻4(𝑀) = 0, the vertical
arrows are isomorphisms when 𝑛 = 4. Thus, letting 𝑎, 𝑏 ∈ 𝐻4(𝐶), we may write (𝑎1, 𝑎2) = ℎ∗(𝑗∗)−1𝑎
and (𝑏1, 𝑏2) = ℎ∗(𝑗∗)−1𝑏. Then,

⟨𝑎 ` 𝑏, [𝐶]⟩ = ⟨𝑗∗(ℎ∗)−1(𝑎1 ` 𝑏1, 𝑎2 ` 𝑏2), [𝐶]⟩
= ⟨(𝑎1 ` 𝑏1, 𝑎2 ` 𝑏2), (ℎ∗)

−1𝑗∗[𝐶]⟩
= ⟨(𝑎1 ` 𝑏1, 𝑎2 ` 𝑏2), ([𝐵1,𝑀], −[𝐵2,𝑀])⟩
= ⟨𝑎1 ` 𝑏1, [𝐵1,𝑀]⟩ − ⟨𝑎2 ` 𝑏2, [𝐵2,𝑀]⟩. (4.3)
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This shows equation (4.1). Now, by naturality of the Pontrjagin classes, we have

𝑠𝑝1(𝐶) = (𝑝1(𝐵1), 𝑝1(𝐵2)).

The commutativity of the last diagram, implies

𝑗∗(ℎ∗)−1(𝑖∗1 ⊕ 𝑖∗2 )
−1(𝑝1(𝐵1), 𝑝1(𝐵2)) = 𝑝1(𝐶).

But now, the computation of equation (4.3) with 𝑎1 = 𝑏1 = (𝑖∗1)
−1𝑝1(𝐵1), 𝑎2 = 𝑏2 = (𝑖∗2 )

−1𝑝1(𝐵2) and
𝑎 = 𝑏 = 𝑝1(𝐶) shows that

𝑞(𝐶) = ⟨𝑝21(𝐶), [𝐶]⟩ = ⟨((𝑖∗1)
−1𝑝1(𝐵1))

2, [𝐵1,𝑀]⟩ − ⟨((𝑖∗2 )
−1𝑝1(𝐵2))

2, [𝐵2,𝑀]⟩ = 𝑞(𝐵1) − 𝑞(𝐵2),

which shows (4.2) and finishes the proof.

Remark 4.4. It should be pointed out in which sense is 𝜆(𝑀) an invariant. Let 𝑀1 and 𝑀2 be two
smooth, compact, oriented 7-manifolds. Suppose there is an orientation preserving diffeomorphism
𝜑 ∶ 𝑀1 → 𝑀2. Choose a compact, oriented 8-manifold 𝐵1 with 𝜕𝐵1 = 𝑀1. Then, using a collar
neighborhood, we may take a compact oriented 8-manifold 𝐵2 with 𝜕𝐵2 = 𝑀2, and extend 𝜑 to an ori-
entation preserving diffeomorphism 𝜙 ∶ (𝐵1,𝑀1) → (𝐵2,𝑀2). Then, it is straightforward to check that
𝜆(𝑀1) = 𝜆(𝑀2), so 𝜆 is an invariant under orientation preserving diffeomorphisms.

Remark 4.5. Note that the 𝜆 invariant of the standard 7-sphere vanishes. Indeed, if𝑀 = 𝕊7, we can
choose 𝐵 to be the 8-disk 𝐷8. Then, the cohomology group 𝐻4(𝐷8, 𝕊7) is trivial and hence 𝑞(𝐷8) =
𝜎(𝐷8) = 0.

4.2 Computation of 𝜆(𝑀7
𝑘 )

As inLemma 2.11, wemay consider the space𝐵8𝑘 obtained by taking two copies ofR
4×𝐷4 and gluing

them through the diffeomorphism

𝑔 ∶ (R4 ∖ {0}) × 𝐷4 ⟶(R4 ∖ {0}) × 𝐷4

(𝑢, 𝑣) ⟼ (𝑢′, 𝑣′) = ( 𝑢
‖𝑢‖2

, 𝑢
ℎ𝑣𝑢𝑗

‖𝑢‖ℎ+𝑗
) .

Using a modification of Lemma 2.10, 𝐵8𝑘 is seen to be a smooth, compact, orientable 8-manifold with

boundary. Furthermore, 𝜕𝐵8𝑘 = 𝑀7
𝑘 , so conditions (i) and (ii) of Definition 4.2 are satisfied for the

manifolds𝑀7
𝑘 . We can thus talk about the invariant 𝜆(𝑀7

𝑘 ).
We can also define orientable vector bundles 𝜉ℎ𝑗 over 𝕊

4 for arbitrary integers ℎ, 𝑗 in an analogous

manner. Namely, take as a total space 𝐸ℎ𝑗 two copies ofR
4 × R4 and glue them with a diffeomorphism

𝑔 ∶ (R4 ∖ {0}) × R4 ⟶ (R4 ∖ {0}) × R4 defined as above. This is again a smooth manifold. Finally,
take as projection 𝜋ℎ𝑗 ∶ 𝐸ℎ𝑗 → 𝕊4 the inverse of the stereographic projection by the north pole on the

first componentR4 of the first copy ofR4 × R4, and similarly by the south pole for the second copy of
R4 ×R4.

Classification of fiber bundles over the sphere

In this subsection we intend to generalize the concept of vector bundles in the sense of allowing fibers
to be arbitrary topological spaces. These new objects will be called fiber bundles. It turns out that fiber
bundles over the sphere 𝕊𝑛 are easily classified up to isomorphism by the homotopy class represented by
a particular map, as is stated below in Theorem 4.12. This applies in particular to vector bundles, but for
the sake of completeness and elegance, it is convenient to state everything in terms of fiber bundles and
then restrict ourselves to the case we are interested in. The main reference is [Ste51], and an alternative
one is [Hat17].

We begin by giving the definition of the notion of coordinate bundle.
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Definition 4.6. A coordinate bundle 𝜉 consists of the following objects:

(i) A topological space 𝐸 called the total space,

(ii) a topological space 𝐵 called the base space,

(iii) a continuous map 𝜋 ∶ 𝐸 → 𝐵 called the projection,

(iv) a topological space 𝐹 called the fiber,

(v) a topological group𝐺 called the structure group,

(vi) a faithful and continuous action of𝐺 on 𝐹, and

(vii) a collection {(𝑈𝑖, 𝜙𝑖)}𝑖∈𝛪 called local trivialization, where {𝑈𝑖}𝑖∈𝛪 is an open cover of 𝐵 and

𝜙𝑖 ∶ 𝑈𝑖 × 𝐹 → 𝜋−1(𝑈𝑖)

are homeomorphisms. The objects𝑈𝑖, 𝜙𝑖 and (𝑈𝑖, 𝜙𝑖) are called coordinate neighborhood, coordinate
function and coordinate system, respectively.

These are required to satisfy the properties below:

(a) (𝜋 ∘ 𝜙𝑖)(𝑏, 𝑥) = 𝑏 for every 𝑖 ∈ 𝐼, 𝑏 ∈ 𝑈𝑖, 𝑥 ∈ 𝐹.

(b) Let 𝜙𝑖,𝑏 for 𝑖 ∈ 𝐼 and 𝑏 ∈ 𝑈𝑖 be the map

𝜙𝑖,𝑏 ∶ 𝐹 → 𝜋−1(𝑏)
𝑥 ↦ 𝜙𝑖(𝑏, 𝑥).

For each 𝑖, 𝑗 ∈ 𝐼 and each 𝑏 ∈ 𝑈𝑖 ∩ 𝑈𝑗, the homeomorphism 𝜙−1𝑖,𝑏 ∘ 𝜙𝑗,𝑏 ∶ 𝐹 → 𝐹must coincide with
the operation of a unique element of𝐺, which we denote by 𝑔𝑖𝑗(𝑏).

(c) For each 𝑖, 𝑗 ∈ 𝐼, the map 𝑔𝑖𝑗 ∶ 𝑈𝑖 ∩ 𝑈𝑗 → 𝐺 defined above must be continuous.

Definition 4.7. We say that two coordinate bundles 𝜉 and 𝜂 with local trivializations {(𝑈𝑖, 𝜙𝑖)}𝑖∈𝛪 and
{(𝑈𝑗, 𝜙𝑗)}𝑗∈𝐽 (𝐼 ∩ 𝐽 = ∅), respectively, are equivalent if they have the same objects from (i) to (vi) in
the definition above, and {(𝑈𝑖, 𝜙𝑖)}𝑖∈𝛪∪𝐽 is the local trivialization of a coordinate bundle also having these
same objects.

It is easily checked that this is an equivalence relation. Hence we may define a fiber bundle as an
equivalence class (under the above relation) of coordinate bundles.

Remark 4.8. It is worth noting at this point that an R𝑛-bundle is a fiber bundle with fiber R𝑛 and
structure group 𝐺𝐿(𝑛,R), an oriented R𝑛-bundle is a fiber bundle with fiber R𝑛 and structure group
𝐺𝐿+(𝑛,R) (matrices with positive determinant), and finally, aC𝑛-bundle is a fiber bundle with fiberC𝑛

and structure group𝐺𝐿(𝑛,C).

Definition 4.9. We say that the structure group𝐺 of a fiber bundle can be reduced to a subgroup𝐻 ⊆ 𝐺
if a local trivialization {(𝑈𝑖, 𝜙𝑖)}𝑖∈𝛪 can be chosen so that 𝑔𝑖𝑗(𝑏) ∈ 𝐻 for every 𝑖, 𝑗 ∈ 𝐼 and 𝑏 ∈ 𝑈𝑖 ∩ 𝑈𝑗. In
this case, we may regard the bundle as a fiber bundle with structure group𝐻.

Remark 4.10. The structure group of anyR𝑛-bundle over a paracompact space can be reduced to𝑂(𝑛).
Indeed, fixing an Euclidean metric on the vector bundle and using the Gram-Schmidt process, allows us
to choose coordinate functions that send an orthonormal basis of R𝑛 to an orthonormal basis of each
fiber. Similarly, the structure group of any orientedR𝑛-bundle over a paracompact space can be reduced
to 𝑆𝑂(𝑛). As all the spaces we consider in this work are paracompact, we will assume the latter reduction
for the oriented vector bundles of this subsection.
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As promised, the isomorphism class of fiber bundles over 𝕊𝑛 with structure group 𝐺 is determined
by the homotopy class of a certain map. We now explain how this map is constructed.

Definition 4.11. Let 𝜉 be a fiber bundle over 𝕊𝑛 with group 𝐺. One can always take a trivialization of
the bundle consisting of two coordinate neighborhoods 𝑉1, 𝑉2 ⊆ 𝕊𝑛 that contain the equator 𝕊𝑛−1 ⊆ 𝕊𝑛.
Furthermore, one can choose a point𝑥0 ∈ 𝕊

𝑛−1 such that the coordinate transformation𝑔12 ∶ 𝑉1∩𝑉2 → 𝐺
sends 𝑥0 to the zero element 𝑒 ∈ 𝐺.3 Restricting 𝑔12 to the equator 𝕊

𝑛−1 gives a function

𝑇𝜉 = 𝑔12|𝕊𝑛−1 ∶ (𝕊
𝑛−1, 𝑥0) → (𝐺, 𝑒)

that will be called characteristic map of 𝜉.

Theorem 4.12. (Classification of bundles over 𝕊𝑛) Two fiber bundles 𝜉, 𝜂 over 𝕊𝑛 with commonfiber𝐹 and
path-connected group 𝐺 are isomorphic if, and only if, their characteristic maps 𝑇𝜉 and 𝑇𝜂 are homotopic.
Fiber bundles over 𝕊𝑛 with group𝐺 are thus classified up to isomorphism by the homotopy group 𝜋𝑛−1(𝐺).

A proof can be found in section 18 of [Ste51] or in chapter 1 of [Hat17].

For the vector bundles𝜉ℎ𝑗wehavedefined above, the equator𝕊
3 ⊆ 𝕊4 is identifiedunder stereographic

projection with the unit quaternions, also denoted 𝕊3 ⊆ R4. Using this, we obtain characteristic maps

𝑓ℎ𝑗 ∶= 𝑇𝜉ℎ𝑗 ∶ (𝕊
3, 1) → (𝑆𝑂(4), id)

given by 𝑓ℎ𝑗(𝑢) ⋅ 𝑣 = 𝑢ℎ𝑣𝑢𝑗 for any 𝑢 ∈ 𝕊3, 𝑣 ∈ R4.

We will need the following lemma.

Lemma 4.13. Denote by 𝜂𝑓 theR
𝑚-bundle over 𝕊𝑛 with characteristic map 𝑓 ∶ (𝕊𝑛−1, 𝑥0) → (𝑆𝑂(𝑚), id)

and assume that𝑚 is even. Then
𝜂𝑓 ⊕ 𝜂𝑔 ≅ 𝜂𝑓𝑔 ⊕ 𝜖𝑚,

where 𝜖𝑚 is the trivial R𝑚-bundle over 𝕊𝑛 and 𝑓𝑔 is obtained by pointwise matrix multiplication, i.e.
(𝑓𝑔)(𝑢) = 𝑓(𝑢) ⋅ 𝑔(𝑢).

Proof. (from [Hat17]) The bundle 𝜉𝑓 ⊕ 𝜉𝑔 has characteristic map 𝑓 ⊕ 𝑔 ∶ 𝕊𝑛−1 → 𝑆𝑂(2𝑚) such that
(𝑓 ⊕ 𝑔)(𝑢) consists of 𝑓(𝑢) in the upper left block and of 𝑔(𝑢) in the lower right one. Since 𝑆𝑂(2𝑚) is
path-connected, we may consider the path 𝛾 ∶ [0, 1] → 𝑆𝑂(2𝑚) that starts with the identity matrix and
ends with the matrix that acts by (𝑢1, 𝑢2) ↦ (𝑢2, 𝑢1) for any 𝑢1, 𝑢2 ∈ R𝑚. Notice that the latter matrix
lives in 𝑆𝑂(2𝑚) because𝑚 is even. Then, the product (𝑓 ⊕ id)𝛾(𝑡)(id ⊕ 𝑔)𝛾(𝑡) gives a homotopy from
𝑓 ⊕ 𝑔 to 𝑓𝑔 ⊕ id, which is the characteristic map of 𝜂𝑓𝑔 ⊕ 𝜖𝑚.

Partial computation of 𝑝1(𝜉ℎ𝑗)

As a first step, let us show the following.

Lemma 4.14. 𝑝1(𝜉ℎ𝑗) is linear with respect to ℎ and 𝑗.

Proof. Notice that thepointwisematrixmultiplication𝑓ℎ𝑗(𝑢)⋅𝑓ℎ′𝑗′(𝑢) equals𝑓ℎ+ℎ′,𝑗+𝑗′(𝑢). ByLemma4.13
and the properties of Pontrjagin classes, we have

𝑝(𝜉ℎ+ℎ′,𝑗+𝑗′) = 𝑝(𝜉ℎ+ℎ′,𝑗+𝑗′ ⊕ 𝜖4) = 𝑝(𝜉ℎ𝑗 ⊕ 𝜉ℎ′𝑗′) = 𝑝(𝜉ℎ𝑗)𝑝(𝜉ℎ′𝑗′).

Keeping only elements of degree 1 (i.e. belonging to𝐻4(𝕊4)), we obtain𝑝1(𝜉ℎ+ℎ′,𝑗+𝑗′) = 𝑝1(𝜉ℎ𝑗)+𝑝1(𝜉ℎ′𝑗′).

3This is shown in section 18 of [Ste51].
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Lemma 4.15. 𝑝1(𝜉ℎ𝑗) = 𝑐(ℎ − 𝑗)𝜄, where 𝑐 is a suitable integer and 𝜄 is a generator of𝐻4(𝕊4).

Proof. By the lemma above, we can already write 𝑝1(𝜉ℎ𝑗) = (𝑎ℎ + 𝑏𝑗)𝜄. Notice that the assignments

(𝑢, 𝑣) ↦ (𝑢, 𝑣), (𝑢′, 𝑣′) ↦ (𝑢′, 𝑣′) determine an isomorphism 𝜉ℎ𝑗 → 𝜉−𝑗−ℎ. This is well-defined because

𝑣′ = 𝑢ℎ𝑣𝑢𝑗

‖𝑢‖ℎ+𝑗
= 𝑢𝑗𝑣𝑢ℎ

‖𝑢‖ℎ+𝑗
= 𝑢−𝑗𝑣𝑢−ℎ

‖𝑢‖−ℎ−𝑗
.

Hence, 𝑎ℎ + 𝑏𝑗 = −𝑎𝑗 − 𝑏ℎ for every pair of integers ℎ, 𝑗. Rearranging, we can write (𝑎 + 𝑏)(ℎ − 𝑗) = 0
from which it is clear that 𝑎 = −𝑏. Setting 𝑐 = 𝑎 finishes the proof.

Determination of the signature 𝜎(𝐵8𝑘 )

The map 𝜌𝑘 ∶ 𝐵
8
𝑘 → 𝕊4 obtained by restricting 𝜋ℎ𝑗 ∶ 𝐸ℎ𝑗 → 𝕊4 to 𝐵8𝑘 is a homotopy equivalence with

homotopy inverse the zero-section. Hence, 𝛼 = 𝜌∗𝑘 (𝜄) is a generator of 𝐻
4(𝐵8𝑘 ) and so is 𝛽 = (𝑖∗)−1𝛼

a generator of 𝐻4(𝐵8𝑘 ,𝑀
7
𝑘 ). We claim that 𝛽2 is also a generator of 𝐻8(𝐵8𝑘 ,𝑀

7
𝑘 ). Indeed, it suffices to

check that the cup product pairing

𝐻4(𝐵8𝑘 ,𝑀
7
𝑘 ) × 𝐻

4(𝐵8𝑘 ,𝑀
7
𝑘 ) → Z

(𝛽1, 𝛽2) ↦ ⟨𝛽1 ` 𝛽2, [𝐵
8
𝑘 ,𝑀

7
𝑘 ]⟩

is non-singular. This is a consequence of the fact that the sequence of isomorphisms

𝐻4(𝐵8𝑘 ,𝑀
7
𝑘 )

𝑖∗≅ 𝐻4(𝐵8𝑘 )
ℎ≅ Hom(𝐻4(𝐵

8
𝑘 ),Z)

𝐷∗≅ Hom(𝐻4(𝐵8𝑘 ,𝑀
7
𝑘 ),Z)

takes a class 𝛽2 ∈ 𝐻
4(𝐵8𝑘 ,𝑀

7
𝑘 ) to the assignment 𝛽1 ↦ ⟨𝛽1 ` 𝛽2, [𝐵

8
𝑘 ,𝑀

7
𝑘 ]⟩. Here, the map ℎ is the one

in the universal coefficient theorem for cohomology 1.39 and 𝐷∗ is the Z-dual of the relative Poincaré
duality isomorphism in Theorem 1.63.

We can thus choose the orientation of𝐵8𝑘 given by the fundamental class [𝐵8𝑘 ,𝑀
7
𝑘 ] ∈ 𝐻8(𝐵

8
𝑘 ,𝑀

7
𝑘 ) so

that
⟨((𝑖∗)−1𝛼)2, [𝐵8

𝑘 ,𝑀
7
𝑘 ]⟩ = +1. (4.4)

In particular, this choice implies 𝜎(𝐵8𝑘 ) = +1.

Partial computation of 𝑝1(𝐵
8
𝑘 )

We now fix integers ℎ, 𝑗 such that ℎ + 𝑗 = 1 and ℎ − 𝑗 = 𝑘.

Lemma 4.16. We have an isomorphism of vector bundles

𝜏(𝐵8𝑘 ) ≅ (𝜋∗ℎ𝑗𝜉ℎ𝑗)|𝛣8𝑘 ⊕ 𝜌∗𝑘𝜏(𝕊
4)

Proof. After fixing aRiemannianmetric on𝐵8𝑘 , wemay decompose 𝜏(𝐵8𝑘 ) as theWhitney sumof 𝜏𝐷4(𝐵
8
𝑘 )

(the vectors tangent to the fiber𝐷4) and𝜏𝐷4(𝐵
8
𝑘 )

⟂ (the vectors normal to the fiber𝐷4). Since𝜌𝑘 ∶ 𝐵𝑘 → 𝕊4

is a submersion, by the regular value theorem, we have 𝜏𝐷4(𝐵
8
𝑘 )

⟂ ≅ 𝜌∗𝑘𝜏(𝕊
4). We can thus already write

𝜏(𝐵8𝑘 ) ≅ 𝜏𝐷4(𝐵
8
𝑘 ) ⊕ 𝜌∗𝑘𝜏(𝕊

4). (4.5)

We now consider the vector bundle 𝜉ℎ𝑗. We claim that the bundle 𝜏R4(𝐸ℎ𝑗) consisting of vectors of 𝜏(𝐸ℎ𝑗)
that are tangent to the fiber R4 is isomorphic to 𝜋∗ℎ𝑗𝜉ℎ𝑗. Indeed, since real vector spaces 𝑉 are canoni-

cally identified with their tangent space 𝑇𝑣𝑉 for any 𝑣 ∈ 𝑉, we may identify the fibers 𝐹𝑒(𝜏R4(𝐸ℎ𝑗)) =
𝑇𝑒(𝐹𝜋(𝑒)(𝜉ℎ𝑗))with the fibers 𝐹𝑒(𝜋

∗
ℎ𝑗𝜉ℎ𝑗) = 𝐹𝜋(𝑒)(𝜉ℎ𝑗) yielding the desired isomorphism.

Finally, observe that 𝜏𝐷4(𝐵
8
𝑘 ) = 𝜏R4(𝐸ℎ𝑗)|𝛣8𝑘 ≅ (𝜋∗ℎ𝑗𝜉ℎ𝑗)|𝛣8𝑘 , which, upon substituting in (4.5), finishes

the proof.
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Now, by theWhitney product formula, we have

𝑝1(𝐵
8
𝑘 ) = 𝑝1 ((𝜋

∗
ℎ𝑗𝜉ℎ𝑗)|𝛣8𝑘 ) + 𝑝1 (𝜌

∗
𝑘𝜏(𝕊

4)) .

The first summand can be determined by naturality of the Pontrjagin classes under the sequence of bun-
dle maps

(𝜋∗ℎ𝑗𝜉ℎ𝑗)|𝛣8𝑘
𝑖→ 𝜋∗ℎ𝑗𝜉ℎ𝑗

𝜋ℎ𝑗
→ 𝜉ℎ𝑗,

where 𝑖 ∶ 𝐵8
𝑘 ↪ 𝐸ℎ𝑗 is the inclusion. Since 𝜌𝑘 = 𝜋ℎ𝑗 ∘ 𝑖, we have

𝑝1 ((𝜋
∗
ℎ𝑗𝜉ℎ𝑗)|𝛣8𝑘 ) = 𝜌∗𝑘𝑝1(𝜉ℎ𝑗) = 𝜌∗𝑘 (𝑐(ℎ − 𝑗)𝜄) = 𝑐𝑘𝛼.

For the second summand, taking elements of degree 1 in Theorem 3.61, we have

𝑝1(H𝑃
𝑛) = (2𝑛 − 2)𝑢 (4.6)

Since 𝕊4 is diffeomorphic to the quaternionic projective lineH𝑃1, naturality implies 𝑝1 (𝜌
∗
𝑘𝜏(𝕊

4)) = 0.
Hence, 𝑝1(𝐵

8
𝑘 ) = 𝑐𝑘𝛼.

Determination of the constant 𝑐

Wenow restrict ourselves to the case 𝑘 = 1. Consider the disk𝐷8 = {[𝑢 ∶ 𝑣 ∶ 1]| ‖𝑢‖2+‖𝑣‖2 ≤ 1} ⊆ H𝑃2.
The assignments

(𝑢, 𝑣) ↦ [𝑢 ∶ 1 ∶ √1 + ‖𝑢‖2𝑣]

(𝑢′, 𝑣′) ↦ [1 ∶ 𝑢′ ∶ √1 + ‖𝑢′‖2𝑣′]

define a diffeomorphism 𝐵81 → H𝑃2 ∖ 𝐷8.
Now, by equation (4.6), 𝑝1(H𝑃

2) equals twice a generator of𝐻4(H𝑃2). Since excision provides an
isomorphism 𝐻4(H𝑃2) → 𝐻4(H𝑃2 ∖ 𝐷8) induced by inclusion, we also have that 𝑝1(H𝑃

2 ∖ 𝐷8) is
twice a generator of 𝐻4(H𝑃2 ∖ 𝐷8). By the diffeomorphism 𝐵81 ≅ H𝑃2 ∖ 𝐷8, 𝑝1(𝐵

8
1 ) is two times a

generator of𝐻4(𝐵81 ) as well. Finally, since 𝑝1(𝐵
8
1 ) = 𝑐𝛼, we must have 𝑐 = ±2.

After all the previous results, we may now state and prove the theorem that was the main goal of this
work.

Theorem 4.17. 𝜆(𝑀7
𝑘 ) ≡ 𝑘2 − 1 (mod 7). Hence, whenever 𝑘2 ≢ 1 (mod 7),𝑀7

𝑘 is an exotic 7-sphere.

Proof. By the choice we made in equation (4.4), we have 𝑞(𝐵8𝑘 ) = ⟨((𝑖∗)−1(±2𝑘𝛼))2, [𝐵8
𝑘 ,𝑀

7
𝑘 ]⟩ = 4𝑘2.

Substituting, we obtain
𝜆(𝑀7

𝑘 ) ≡ 8𝑘2 − 1 ≡ 𝑘2 − 1 (mod 7).
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